

Гибкие полимерные теплоизолированные трубы

ΤΒЭΛ-ΠЭΚС-ΧΒС

Техническое руководство

- описание ассортимент комплектующие
- монтаж проектирование рекомендации

1.	<u>Опи</u>	<u> 1Сани</u>	е систе	МЫ	<u>3</u>
	1.1	<u>06ı</u>	щие поло	жения	3
	1.2	06,	ласть при	менения	4
	1.3		_		
	1.3	<u>Occ</u>	<u> оснности</u>	I СИСТЕМЫ	4
	1.4	Кон	<u> іструкция</u>	<u> трубы. Материалы</u>	<u>5</u>
	1.5	<u>Ma</u> j	ркировка		<u>5</u>
	1.6	Осн	новные ха	рактеристики	6
2.	Hon	<u> 1енк</u> л	<u> татура</u>	продукции	<u>7</u>
	2.1 2.2			мерные теплоизолированные трубы ТВЭЛ-ПЭКС ьные и фасонные элементы. Запорная арматура	<u>7</u>
		2.2.1	Переч	ень сварных фитингов, комплектующих и инструментов	8
			2.2.1.1	Отвод	8
			2.2.1.2	<u>Тройник</u>	9
			2.2.1.3	Тройник редукционный	9
			2.2.1.4	Втулка под фланец	10
			2.2.1.5	Редуктор	11
			2.2.1.6	Заглушка	12
			2.2.1.7	Переход "сталь – полиэтилен"	12
			2.2.1.8	Цокольный ввод с резьбой сталь-полиэтилен удлиненный	13
			2.2.1.9 2.2.1.10	Цокольный ввод медь-полиэтилен	14
			2.2.1.10	Муфта электросварная с переходом на резьбу Переходной вкладыш латунный/ПЕ	14 16
			2.2.1.11	Отвод электросварной 90°с переходом на резьбу	17
			2.2.1.12	Отвод электросварной о спереходом на резьбу	18
			2.2.1.13	Муфта соединительная переходная электросварная	19
			2.2.1.15	Отвод переходной электросварной 90°	19
			2.2.1.16	Отвод-колено переходной электросварной 45°	20
			2.2.1.17	Седелка переходная электросварн. с латунным вкладышем	21
			2.2.1.18	Седелка переходная электросварная с запорной арматурой	22
			2.2.1.19	Фланец стальной с полипропиленовым покрытием	22
			2.2.1.20	Фланец	23
			2.2.1.21	Муфта соединительная электросварная PN 10 – SDR17	25
			2.2.1.22	Муфта соединительная электросварная PN 16 — SDR11	26
			2.2.1.23	Муфта соединительная электросварная PN 25 — SDR 7,4	27
			2.2.1.24	Седелка электросварная без фрезы	28
			2.2.1.25	Седелка электросварная с фрезой	29
			2.2.1.26	Седелка электросварная без фрезы	30
			2.2.1.27	Седелка электросварная с фрезой	32

			2.2.1.28	седелка электросварная с фрезой и клапаном	34
			2.2.1.29	Штанга управления для седелки электросварной с к	клапаном 34
			2.2.1.30	Отвод электросварной 90 ⁰	35
			2.2.1.31	Тройник электросварной 90°	36
			2.2.1.32	Заглушка электросварная	37
			2.2.1.32		38
				Муфта редукционная (переход электросварной)	
			2.2.1.34	Оборудование	39
		2.2.2	Переч	чень компрессионных фитингов	46
			2.2.2.1	Муфта с наружной резьбой	46
			2.2.2.2	Муфта соединительная	46
			2.2.2.3	<u>Тройник</u>	47
			2.2.2.4	Тройник с наружной резьбой	47
			2.2.2.5	Отвод	48
			2.2.2.6	Отвод с наружной резьбой	48
			2.2.2.7	Тройник переходной	49
			2.2.2.8	Переходник	49
			2.2.2.9	Отвод переходной	50
			2.2.2.10	Заглушка	50
			2.2.2.11	Муфта с внутренней резьбой	<u>51</u>
			2.2.2.12	Тройник с внутренней резьбой	51
			2.2.2.13	Отвод с внутренней резьбой	52
			2.2.2.14	Ремонт муфты	52
	2.3	Kor	мплектую	ощие	<u>53</u>
		2.3.1	Проде		EO
		2.3.1		охранитель концевой термоусаживаемый	<u>53</u>
		2.3.2		лект для изоляции стыка	<u>54</u>
		2.3.3 2.3.4		ддя изоляции линейного стыка	<u>54</u>
		2.3.4		для изоляции отвода 90° для изоляции тройника	<u>56</u> 57
		2.3.6			
		2.3.7		прохода через стену изоляционный материал	<u>59</u> 60
		2.3.1	<u>161710</u>	изоляционный материал	
	2.4	<u>06</u>	орудован	ие для систем электрического обогрева	60
		2.4.1	Короб	ки соединительные	61
		2.4.2		оллеры	61
		2.4.3		тектующие материалы и изделия для монтажа	
				дования	62
		2.4.4		ы управления	65
3.	Про	ректи	ровани	е систем электрического обогрев	a 66
	3.1	Све	едения дл	ія технического задания	66
	3.2	Tex	<u>кнические</u>	е требования	66
	3.3	Coc	став систе	емы обогрева	67
	3.4	Ter	іловой пе	жим работы трубопровода	67

	3.5	<u>Расч</u>	ет линейной мощности и длины кабеля	<u>68</u>
	3.6	Прок	кладка трубопроводов	<u>69</u>
	3.7	Форг	мулы для расчетов	<u>70</u>
4.	<u>Per</u>	коменд	ации по производству работ	72
	4.1	<u>Хран</u>	иение — — — — — — — — — — — — — — — — — — —	<u>72</u>
	4.2	<u>Тран</u>	спортирование	74
	4.3	Погр	узочно-разгрузочные работы и размотка трубы	<u>75</u>
	4.4	<u>Орга</u>	низация производства работ прокладке и монтажу	<u>76</u>
		4.4 1 4.4 2 4.4 3	Подготовительные работы Монтажные работы Земляные работы	76 77 77
	4.5		гаж соединительных элементов	78
		4.5.1 4.5.2 4.5.3	Подготовка трубы к монтажу Монтаж компрессионных соединительных элементов Монтаж электросварных соединительных элементов	78 79 80
	4.6	Соед	инение кабель-каналов	82
	4.7	Изол	іяция стыкового соединения	83
		4.7.1 4.7.2	Изоляция стыкового соединения при помощи разъемного кожуха Изоляция стыкового соединения при помощи п/э муфты	83 84
	4.8	Испь	ытания трубопровода	87
	4.9	Монт	гаж системы электрообогрева	87
		4.9.1 4.9.2 4.9.3 4.9.4 4.9.5 4.9.6	Общие положения Прокладка и крепление нагревательного кабеля Монтаж нагревательного кабеля Расположение датчиков температуры Заземление и защита электрических цепей Окончательное подключение	87 88 89 90 90
	4.10	Пуск	о-наладочные работы	91
		4.10.1 4.10.2	Общие положения Настройка и испытание	91 91

1. Описание системы

1.1 Общие положения

ТВЭЛ-ПЭКС — система гибких теплоизолированных незамерзающих полимерных труб, которая предназначена для транспортировки холодной воды в системах хозяйственно-питьевого водоснабжения, системах напорной канализации в условиях отрицательных температур окружающей среды, а также для транспортировки сточных вод, в холодильных установках и пр.

Система ТВЭЛ-ПЭКС может применяться в качестве водопроводов небольших и средних диаметров для питьевого водоснабжения в наружных сетях жилых и общественных зданий, в промышленности и сельском хозяйстве.

Монтаж несущих полиэтиленовых труб ТВЭЛ-ПЭКС осуществляется с применением соединительных элементов с закладными нагревательными элементами, и, либо компрессионных соединительных элементов, либо способом "сварки встык".

Трубы соответствуют Единым санитарно-эпидемиологическим и гигиеническим требованиям к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю) и имеют необходимые сертификаты.

1.2 Область применения

Гибкие полимерные трубы ТВЭЛ-ПЭКС предназначены для применения в качестве сетей для транспортировки жидких сред с температурой от 0 до + 40°С. В качестве жидких сред может использоваться вода, а также другие жидкие вещества, к которым полиэтилен несущей трубы обладает химической стойкостью.

Трубы ТВЭЛ-ПЭКС предназначены для подземной бесканальной прокладки. Трубы ТВЭЛ-ПЭКС могут использоваться для надземной прокладки при обеспечении мероприятий по защите наружной оболочки от влияния солнечного света и несанкционированного механического воздействия.

1.3 Особенности системы

Для поддержания положительной температуры транспортируемой среды система ТВЭЛ-ПЭКС оснащена системой подогрева несущей трубы, включающей в себя саморегулирующийся термокабель, помещенный внутрь кабель-канала, который прикреплен к несущей трубе.

Трубы ТВЭЛ-ПЭКС обладают гибкостью, позволяющей спроектировать оптимальный маршрут сети, огибать препятствия в условиях плотной городской застройки: строения, коммуникации, деревья.

Физические свойства системы труб ТВЭЛ-ПЭКС позволяют применять систему без компенсаторов, отводов и неподвижных опор. При проектировании и монтаже трубопровода не требуется устройство системы оперативного дистанционного контроля, дренажа, уклона и защиты от электрохимической коррозии.

Трубы ТВЭЛ-ПЭКС поставляются на объект монтажа в свернутом состоянии длинномерными отрезками требуемой длины в бухтах или на специальных барабанах. Это позволяет свести к минимуму количество стыковых соединений и существенно сократить затраты на тепло- и гидроизоляцию стыков.

1.4 Конструкция трубы. Материалы

Для изготовления труб ТВЭЛ-ПЭКС используются:

- трубы напорные из полиэтилена;
- композиция полужесткого пенополиуретана (ППУ) в качестве теплоизоляции;
- композиции полиэтилена низкой плотности для защитной оболочки.

Конструкция труб ТВЭЛ-ПЭКС также включает в себя:

- кабель-канал из сшитого полиэтилена;
- лента монтажная самоклеящаяся для монтажа кабельканала.

Рис.1. Конструкция трубы ТВЭЛ-ПЭКС-ХВС

1.5 Маркировка

На внешней поверхности защитной оболочки трубы наносится маркировка и условное обозначение трубы.

Условное обозначение состоит из слова "труба", торгового наименования "ТВЭЛ-ПЭКС", сокращенного наименования материала напорной трубы, стандартного размерного отношения (SDR), типоразмера трубы, назначения трубы и обозначения технических условий, по которым труба выпускается.

Обозначение типоразмера трубы включает в себя величину номинального наружного диаметра напорной трубы и величину номинального наружного диаметра защитной оболочки, разделенные символом "/".

Примеры условных обозначений

Труба ТВЭЛ-ПЭКС: напорная труба из полиэтилена ПЭ 100 с SDR 17 (ПЭ может быть иной марки, SDR - либо иное значение — по желанию, ТЗ заказчика) номинальным наружным диаметром 40 мм, защитная оболочка номинальным наружным диаметром 110 мм, предназначенная для систем хозяйственно-питьевого водоснабжения:

Труба ТВЭЛ-ПЭКС ПЭ 100 SDR 17 40/110 ТУ...

1.6 Основные характеристики

Таблица 1.1. Основные эксплуатационные характеристики труб ТВЭЛ-ПЭКС

Характеристика	Значение
Рабочая температура	до 40°C
Рабочее давление	1,0 - 1,25 МПа
Наружный диаметр напорной трубы	25 - 160 мм
Длина отрезка	до 400 м (в зависимости от диаметра трубы)
Исполнение	однотрубное
Способы прокладки	подземный и наземный
Назначение	незамерзающие сети холодного водоснабжения и напорной канализации

Таблица 1.2. Основные физические характеристики конструктивных элементов трубы

Слой	Характеристика	Значение		
уба	Материал	полиэтилен ПЭ-100 (ПЭ-80) по ГОСТ 18599-2001		
тру	Плотность, кг/ м3	0,935-0,960		
ная	Температура плавления, °С	130		
Напорная труба	Температура хрупкости, определенная по стандартизированному методу, °С	-70		
	Удлинение при текучести, %	12-25		
	Материал	полужесткий пенополиуретан (ППУ)		
	Плотность, кг/ м3	> 60		
Геплоизоляция	Теплопроводность при средней температуре 50°C, Вт/(м-К)	<0,032		
ПОИЗ	Напряжение сжатия при 10%- ной деформации, МПа	> 0,2		
Ten,	Водопоглощение после выдержки в холодной воде в течение 24 ч, % по объему	<10		
	Объемная доля закрытых пор, %	> 90		
	Материал	бесшовный гофрированный полиэтилен высокого давления		
Защитная оболочка	Плотность, кг/ м3	920-930		
	Теплопроводность, Вт/(м-К)	0,43		
) % o	Температура плавления, °С	105-110		
	Назначение	гидрозащитная теплоизоляционного слоя		

Таблица 1.3. Основные физические характеристики конструктивных элементов кабель-канала

Материал	Ре-х, сшитый полиэтилен
Размеры (ширина х высота х толщина стенки), мм	18 x11x1,6
Масса, кг/м	0,065

2. Номенклатура продукции

2.1 Гибкие полимерные теплоизолированные трубы ТВЭЛ-ПЭКС

Таблица. Номенклатура труб ТВЭЛ-ПЭКС

Примечание: возможно по специальному заказу изготовление трубы в изоляции больше на типоразмер.

2.2 Соединительные и фасонные элементы. Запорная арматура

Электросварные соединительные и электросварные фасонные элементы изготавливаются методом литья под давлением или методом экструзии с последующей механической обработкой и предназначены для соединения труб из полиэтилена, разветвления трубопровода и присоединения к металлическим частям трубопровода.

Таблица 1.4. Основные типоразмеры труб ТВЭЛ-ПЭКС

Типоразмер трубы, d трубы		труба, d x e, лм	Расчетная масса,	Защитная оболочка, номинал,	Средняя толщина теплоизоляции,	Min радиус изгиба,
/d оболочки, мм	SDR 17 SDR 13,6		кг/м	D x e1, mm	мм	м
25/90		25x2,0	1,03	90x2,5	30,0	0,8
32/90	32x2,0		1,10	90x2,5	26,5	0,8
40/110	40x2,4		1,40	110x2,5	32,5	0,9
50/125	50x3,0		2,05	125x2,5	35,0	1,0
63/140	63x3,8		2,70	140x2,5	36,0	1,1
75/140	75x4,5		3,02	140x2,5	30,0	1,1
90/160	90x5,4		3,85	160x2,8	32,2	1,2
110/180	110x6,6		4,70	180x3,2	31,8	1,3
125/225	125x7,4		7,20	225x3,8	46,2	1,6
140/225	140x8,3		8,82	225x3,8	38,7	1,6
160/225	160x9,5		10,20	225x3,8	28,7	1,6

В процессе производства в корпус фитинга закладывается электрический нагревательный элемент в виде металлической спирали или проволоки.

Электросварные фасонные элементы имеют маркировку в виде штрих-кода, в котором запрограммирована информация о температуре нагрева, величине напряжения и номинального времени сварки, а также время остывания после сварки, которое необходимо для получения герметичного соединения. Информация со штрих-кода считывается электронным способом при помощи сварочного аппарата, или визуальным способом.

2.2.1.1 <u>Отвод 90⁰</u>

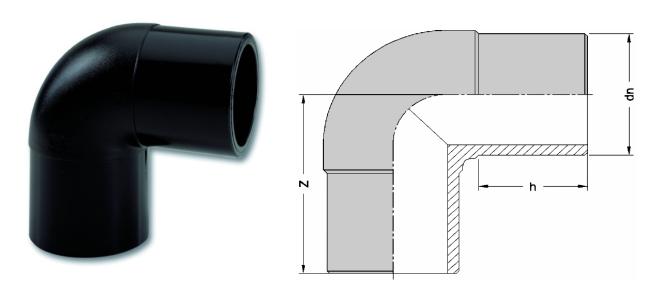


Таблица 2.1. Отвод 90 град. электросварной. Диаметры, размеры, вес.

				вес, г				
dn, мм	размер	оы, мм	SDR 17	SDR 11	SDR 7,4			
	h	Z	PN 10	PN 16	PN 25			
20	49	75		28				
25	53	80		37				
32	59	89		53	65			
40	59	85		75	100			
50	60	89		120	175			
63	68	103		225	295			
75	71	114		330	450			
90	80	130	390	535	750			
110	85	146	620	850	1250			
125	89	159	915	1310	1800			
140	94	172	1250	1795	2500			
160	115	225	2155	3000	4100			

2.2.1.2 Тройник

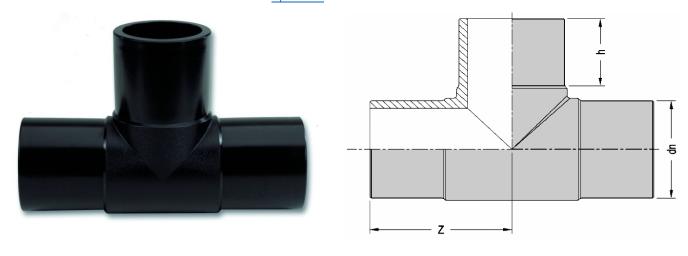


Таблица 2.2. Тройник электросварной. Диаметры, размеры, вес.

				вес, г		
dn, mm	разме	ры, мм	SDR 17	SDR 11	SDR 7,4	
	h	Z	PN 10	PN 16	PN 25	
20	59	80		45		
25	60	76		50		
32	60	82		85	100	
40	59	84		105	150	
50	60	89		165	245	
63	67	103		310	455	
75	74	126		540	750	
90	80	135	580	850	1170	
110	95	162	965	1480	2115	
125	90	160	1315	1895	2650	
140	95	174	1790	2555	3500	
160	106	200	2630	3765	5150	

2.2.1.3 Тройник редукционный

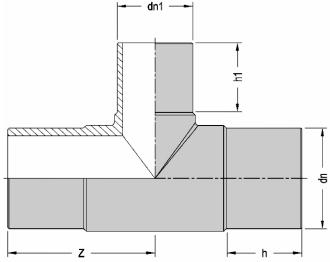


Таблица 2.3. Тройник редукционный электросварной. Диаметры, размеры, вес.

dn, mm			naaraanii rara		вес, г			
	dn1, мм		размеры, мм		SDR 17	SDR 11		
		h	h1	Z	PN 10	PN 16		
90	63	90	74	147		830		
110	63	88	62	158		1330		
110	90	95	89	162		1375		
125	90	100	85	179		1790		
125	110	100	95	179		1920		
160	90	111	84	212	2850	3540		
160	110	111	93	212	2960	3680		

2.2.1.4 Втулка под фланец

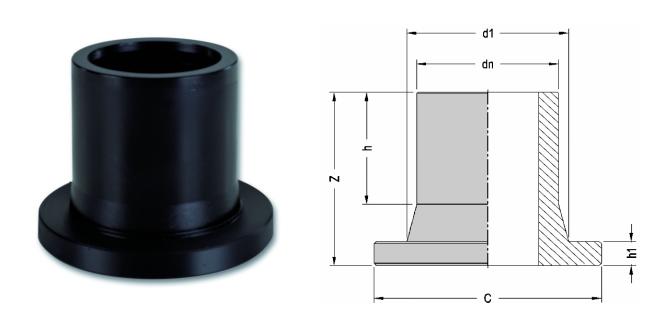


Таблица 2.4. Втулка под фланец электросварная. Диаметры, размеры, вес.

41.5		размеры, мм											вес, г		
dn,	h			h1			Z			d1	C	SDR 17	SDR 11	SDR 7,4	
MM	SDR17	SDR11	SDR7,4	SDR17	SDR11	SDR7,4	SDR17	SDR11	SDR7,4			PN 10	PN 16	PN 26	
20	_		45	-		7			67	27	45			25*	
25		48	50	1	9	10	-	75	75	33	58		40	35	
32	_	68	69	1	10	11	1	96	95	40	68		60	50	
40	63	62	69	11	11	12	87	87	94	50	78	70	80	100	
50	62	61	66	12	12	13	88	95	94	61	88	95	90	150	
63	66	86	65	14	14	16	98	120	96	75	102	145	200	245	
75	74	94	68	16	16	18	116	130	109	89	122	250	300	365	
90	98	97	81	17	17	20	140	140	121	105	138	360	460	570	
110	112	112	87	18	18	21	155	153	128	125	158	550	670	875	
125	93	122	107	18	25	28	131	167	161	132	158	505	860	1225	
140	104	108	105	18	25	29	154	156	159	155	187	750	1140	1650	
160	109	106	104	18	30	29	156	159	160	175	212	1035	1520	2060	

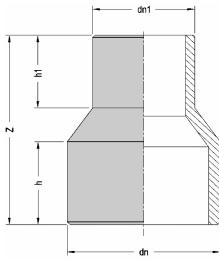


Таблица 2.5. Редуктор электросварной. Диаметры, размеры, вес.

	dn1, mm				вес, г					
dn, мм		þ	размеры, мм		SDR 17	SDR 11	SDR 7,4			
		h	h1	Z	PN 10	PN 16	PN 25			
25x	20	49	50	113		25	25			
32x	20	55	52	124		30				
Х	25	61	59	130		35	35			
40x	20	59	52	130		40				
х	25	59	54	128		45				
Х	32	61	48	125	40	45	70			
50x	25	60	50	135		60	80			
Х	32	60	47	134		65	90			
х	40	60	62	134	50	75	110			
63x	25	64	57	140		90				
х	32	64	63	143	70	100	130			
х	40	68	52	139	80	105	150			
х	50	63	57	132	80	115	150			
75x	40	72	60	147	100	160	230			
х	50	72	59	153	110	165	240			
х	63	73	67	154	150	195	280			
90x	50	82	61	162	180	260	345			
Х	63	80	68	169	190	280	400			
Х	75	83	71	164	205	305	445			
110x	50	88	57	177	270	390				
х	63	87	69	188	285	410	555			
Х	75	85	72	173	285	425	620			
х	90	86	81	181	330	485	690			
125x	63	96	68	199		580				
х	75	95	78	191	400	610	790			
х	90	96	81	191	430	625	855			
х	110	96	84	192	460	720	985			
140x	90	95	80	205	555	815	1145			
х	110	94	83	193	560	820	1215			
х	125	95	89	198	590	970	1380			
160 x	90	101	82	221	705	1105				
Х	110	101	103	270	950					
Х	110	101	86	218		1160	1565			
х	125	101	91	208	735	1155	1645			
х	140	101	92	206	835	1235	1780			

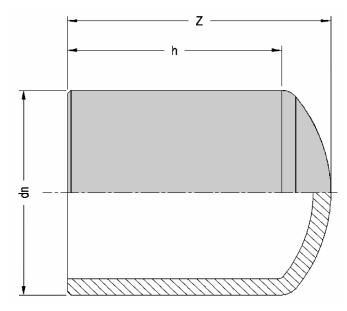


Таблица 2.6. Заглушка электросварная. Диаметры, размеры, вес.

			вес, г						
dn, mm	разм	еры, мм	SDR 17	SDR 11	SDR 7,4				
	h	Z	PN 10	PN 16	PN 25				
20	54	59			10				
25	60	68		15	17				
32	53	59		20	25				
40	57	68	25	30	40				
50	61	74	50	50	70				
63	64	80	65	85	115				
75	74	89	90	150	200				
90	82	100	165	230	340				
110	91	118	265	395	600				
125	102	122	350	570	790				
140	103	125	450	780	1150				
160	101	134	665	950	1420				

2.2.1.7 <u>Переход "сталь – полиэтилен"</u>

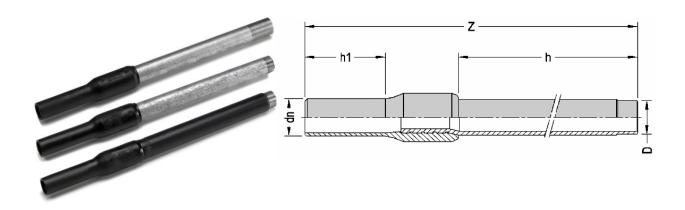


Таблица 2.7. Переход "сталь – полиэтилен". Диаметры, размеры, вес.

			Внешний		р	азмеры,	мм	вес, г	
dn	dn D	D	диаметр	Толщина				SDR 11 - P	N 16
		_	стали	стали	h	h1	Z	оцинкованная	с покрытием
25		3/4"	26,9	2,6	300	97	495	635	640
32	1"		33,7	3,2	300	103	499	945	1005
40	1"	1/4	42,4	3,2	300	106	508	1220	1290
50	1"	1/2	48,3	3,2	300	117	516	1430	1545
63	2"		60,3	3,6	300	135	545	2120	2270
75	2"	1/2	76,1	3,6	300	165	580	2900	3080
90	3"		88,9	4,0	305	162	590	3450	3860
110	4"		114,3	4,5	300	203	635	5650	5980
125	4"		114,3	4,5	300	205	630	5950	6180

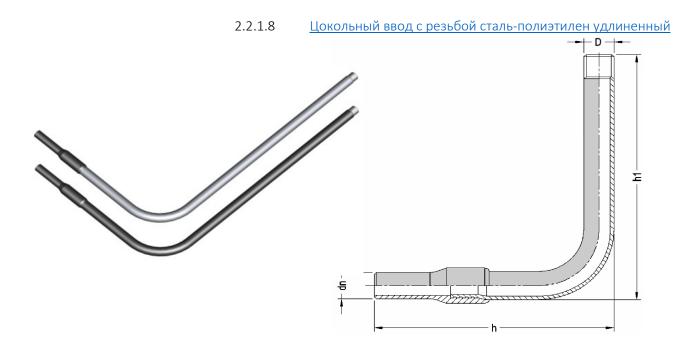


Таблица 2.8. Цокольный ввод с резьбой сталь-полиэтилен удлиненный. Диаметры, размеры, вес.

					D22440	21. 8484	вес, г		
do ses		D	Внешний	Толщина	разме	оы, мм	SDR 11 - PN 16		
dn, mm		J	диаметр стали	стали	h	h1	труба оцинкованная	труба с покрытием	
25		3/4"	26,9	2,6	640	700	1720	2020	
32	1"		33,7	3,2	530	825	2750	2900	
40	1"	1/4	42,4	3,2	555	830	3120	3500	
50	1"	1/2	48,3	3,2	700	700	3850	4450	
63	2"		60,3	3,6	780	700	5800	6150	

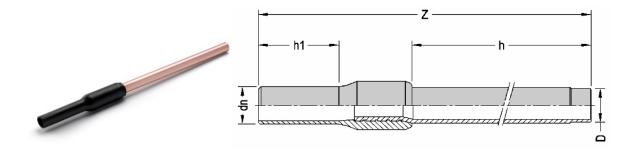


Таблица 2.9. Цокольный ввод медь-полиэтилен. Диаметры, размеры, вес.

dn, mm	D	D	D	Толщина	Р	азмеры, м	м	вес, г SDR 11
		меди	h	h1	Z	PN 16		
25	18	1,5	300	97	495	335		
25	22	1,5	300	97	495	375		
32	22	1,5	300	103	500	425		
32	28	1,5	300	103	500	490		

2.2.1.10 Муфта электросварная с переходом на резьбу

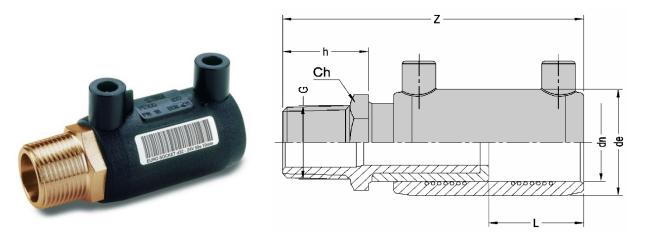


Таблица 2.10. Муфта электросварная с наружной резьбой. Диаметры, размеры, вес.

d	G			разме	вес, г		
dn, mm			L	h	Z	Ch	SDR 7,4 - PN 25
20		1/2"	33	20	96	22	125
25		3/4"	33	21	97	27	160
32	1"		38	26	111	34	230
40	1"	1/4	44	29	124	42	410
50	1"	1/2	49	33	139	52	600
63	2"		54	37	158	65	950
75	2"	1/2	60	43	173	86	1400
90	3"		65	46	190	97	2000
110	4"		70	52	204	125	2980

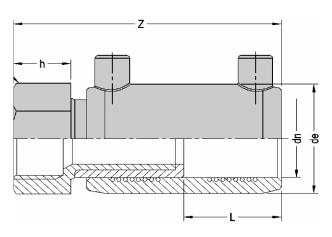


Таблица 2.11. Муфта электросварная с внутренней резьбой. Диаметры, размеры, вес

d				разме	вес, г		
dn, mm		G	L	h	Z	Ch	SDR 7,4 - PN
20		1/2"	33	18	94	27	120
25		3/4"	33	20	96	34	160
32	1"		38	22	107	40	275
40	1"	1/4	44	27	122	50	550
50	1"	1/2	49	27	133	55	790
63	2"		54	33	154	67	950
75	2"	1/2	60	39	169	86	1440
90	3"		65	42	186	97	1940
110	4"		70	48	200	125	3050

Таблица 2.12. Муфта электросварная с переходом на резьбу. Свариваемость на трубе/фитинге

do	Сва	Свариваемость на трубе/фитинге								
dn, mm		PE :								
	SDR 17	SDR 11	SDR 9	SDR 7,4						
20		• 🛦	•	•						
25		• 🛦	•	•						
32	* 🛦	•	•	•						
40	* 🛦	•	•	•						
50	*	•	•	•						
63	*	•	•	•						
75	•	•	•	•						
90	•	•	•	•						
110	•	•	•	•						

^{*} сваривается только с помощью моновалентного электросварочного аппарата Euro

[▲] минимальная толщина стенки трубы – 3 мм

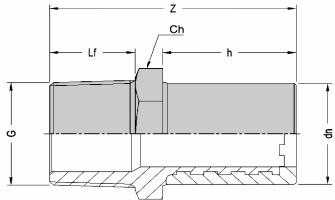


Таблица 2.13. Переходной вкладыш латунный/ПЕ с наружной резьбой. Диаметры, размеры, вес

d10	G			разме	вес, г		
dn, mm			Lf	h	Z	Ch	SDR 7,4 - PN 25
20		1/2"	15	41	61	22	75
25		3/4"	16	41	62	27	90
32	1"		19	44	70	34	150
40	1"	1/4"	21	49	78	42	260
50	1"	1/2"	23	55	88	52	390
63	2"		26	63	100	65	660
75	2"	1/2"	31	70	113	86	1060
90	3"		34	79	125	97	1520
110	4"		40	82	134	125	2250

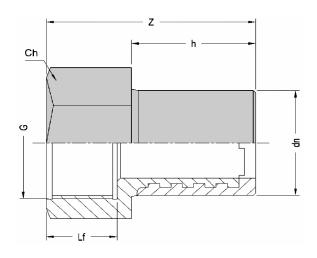


Таблица 2.14. Переходной вкладыш латунный/ПЕ с внутренней резьбой. Диаметры, размеры, вес

d10 200	G			разме	вес, г		
dn, mm			Lf	h	dn	Ch	SDR 7,4 - PN 25
20		1/2"	15	41	59	27	90
25		3/4"	17	41	61	34	130
32	1"		19	44	66	40	180
40	1"	1/4"	21	49	76	50	320
50	1"	1/2"	21	55	82	55	420
63	2"		28	63	96	67	635
75	2"	1/2"	34	70	109	86	1100
90	3"		37	79	121	97	1440
110.	4"		43	82	130	125	2240

Таблица 2.15. Отвод электросварной 90°с переходом на резьбу. Свариваемость на трубе/фитинге.

		., ,,									
dn, mm	Свариваемость на трубе/фитинге PE 100										
	SDR17	SDR17 SDR11 SDR9 SDR7,4									
20		• 🛦	• 🛦	•							
25		• 🛦	•	•							
32	* 🔺	•	•	•							
40	* 🔺	•	•	•							
50	*	•	•	•							
63	*	•	•	•							
75	•	•	•	•							
90	•										
110	•	•	•	•							

^{*}сваривается только с помощью моновалентного электросварочного аппарата Euro

▲ минимальная толщина стенки трубы – 3 мм

Таблица 2.16. Отвод электросварной с наружной резьбой. Диаметры, размеры, вес

	G			вес, г			
dn, MM			G		Lf	h	dn
20		1/2"	33	20	79	22	120
25		3/4"	33	21	83	27	160
32	1"		39	26	106	42	310
40	1"	1/4	48	29	114	52	500
50	1"	1/2	54	33	129	65	425
63	2"		52	37	151	67	1180
75	2"	1/2	64	43	169	86	1750
90	3"		70	46	190	97	2560
110	4"		76	52	210	125	3900

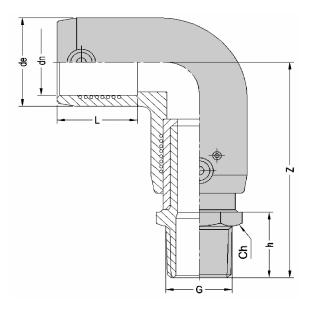
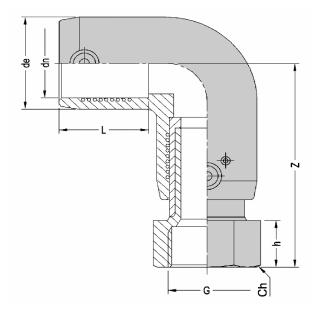
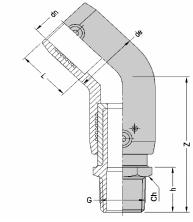
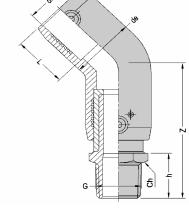


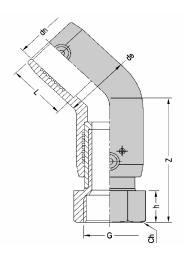
Таблица 2.17. Отвод электросварной с внутренней резьбой. Диаметры, размеры, вес

-1				рази	еры, мі	м	вес, г
dn, MM	(G	Lf	h	dn	Ch	SDR 7,4 – PN 25
20		1/2"	33	18	79	27	160
25		3/4"	33	20	82	34	200
32	1"		39	22	102	40	360
40	1"	1/4	48	27	111	50	705
50	1"	1/2	54	27	121	55	1045
63	2"		52	33	147	67	1140
75	2"	1/2	64	39	165	86	1785
90	3"		70	42	186	97	2500
110	4"		76	48	206	125	3920






Таблица 2.18. Отвод электросварной 45° с переходом на резьбу. Свариваемость на трубе/фитинге.


dn, mm	Свариваемость на трубе/фитинге РЕ 100							
	SDR 17	SDR 17 SDR 11 SDR 9 SDR 7,						
25		• 🛦	•	•				
32	* 🛕	•	•	•				
40	* 🛕	•	•	•				
50	*	•	•	•				
63	*	•	•	•				
75	•	•	•	•				
90	•							
110	•	•	•	•				

* - сваривается только с помощью моновалентного электросварочного аппарата Euro 🛕 - минимальная толщина стенки трубы 3 мм

Таблица 2.19. 45° Отвод электросварной с наружной резьбой. Диаметры, размеры, вес

				рази	леры, мм	l	вес, г
dn, MM	G		L	h	z	Ch	SDR 7,4 – PN 25
25	3/4"		33	21	76	27	240
32	1"		39	26	88	34	290
40	1"	1/4"	48	29	104	42	430
50	1"	1/2"	54	33	114	52	635
63	2"		52	37	133	65	1060
75	2"	1/2"	64	43	151	86	1680
90	3"		70	46	170	97	2420
110	4"		76	52	178	125	3630

Таблица 2.20. 45°Отвод электросварной с внутренней резьбой Диаметры, размеры, вес

				разл	леры, ми	١	вес, г
dn, MM	G	ì	L	h	z	Ch	SDR 7,4 – PN 25
25	3/4"		33	20	75	34	295
32	1"		39	22	84	40	330
40	1"	1/4"	48	27	101	50	510
50	1"	1/2"	54	27	108	55	720
63	2"		52	33	129	67	1060
75	2"	1/2"	64	39	147	86	1725
90	3"		70	42	166	97	2350
110	4"		76	48	174	125	3690

2.2.1.14 Муфта соединительная переходная электросварная

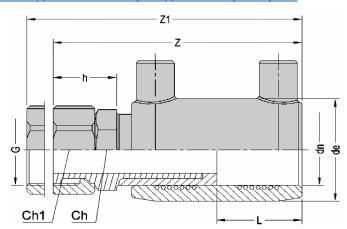


Таблица 2.21. Муфта соединительная переходная электросварная. Свариваемость на трубе/фитинге.

	, c c c a p a			Ψ							
dn, mm	Свариваемость на трубе/фитинге РЕ 100										
	SDR 17	SDR 17 SDR 11 SDR 9 SDR 7,4									
20		• 🛦	•	•							
25		• 🛦	•	•							
32	* 🛕	•	•	•							
40	* 🛕	•	•	•							
50	*	* • •									
63	*	•	•	•							

^{* -} сваривается только с помощью моновалентного электросварочного аппарата Euro

▲ - минимальная толщина стенки трубы – 3 мм

Таблица 2.22. Муфта соединительная переходная электросварная. Диаметры, размеры, вес

م. لم				F	вес, г				
dn, MM	G		Г	h	Z	Z1	Ch	Ch1	SDR 7,4 - PN 25
20		1/2"	33	22	98	108	22	27	145
25		3/4"	33	22	98	108	27	30	170
32	1"		38	27	112	120	32	36	250
40	1"	1/4"	44	30	125	141	42	50	460
50	1"	1/2"	49	32	137	152	52	58	695
63	2"		54	39	160	183	65	67	1060

2.2.1.15 Отвод переходной электросварной 90°

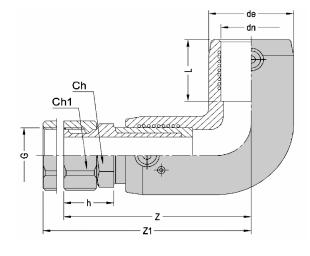


Таблица 2.23. Отвод переходной электросварной 90°. Свариваемость на трубе/фитинге.

50 63

 dn, мм
 Свариваемость на трубе/фитинге PE 100

 SDR 17
 SDR 11
 SDR 9
 SDR 7,4

 25
 • • • • • • •
 •
 •

 32
 * • • • • • • • • •
 •
 •

 40
 * • • • • • • • • • •
 •
 •

•

2.2.1.16 Отвод колено-переходной электросварной 45°

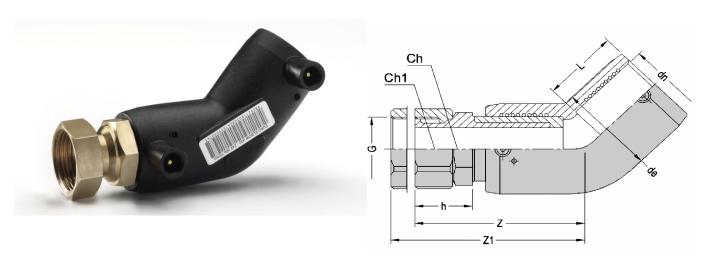


Таблица 2.24. Отвод-колено переходной электросварной 45°. Свариваемость на трубе/фитинге.

dia see	Свариваемость на трубе/фитинге РЕ 100						
dn, mm	SDR 17	SDR 11	SDR 9	SDR 7,4			
32	• 🛦	•	•	•			
40	• 🛦	•	•	•			
50	•	•	•	•			
63	•	•	•	•			

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

Таблица 2.25. Отвод- колено переходной электросварной 45°. Диаметры, размеры, вес

d10 2000	,	,			размер	ъ, мм		вес, г	
dn, mm	G		L	h	Z	Z1	Ch	Ch1	SDR 7,4 - PN 25
32	1"		39	27	89	97	32	36	290
40	1"	1/4	48	30	104	120	42	50	525
50	1"	1/2	54	32	112	127	52	58	800
63	2"		52	39	135	158	65	67	1225

^{▲ -} минимальная толщина стенки трубы - 3 мм

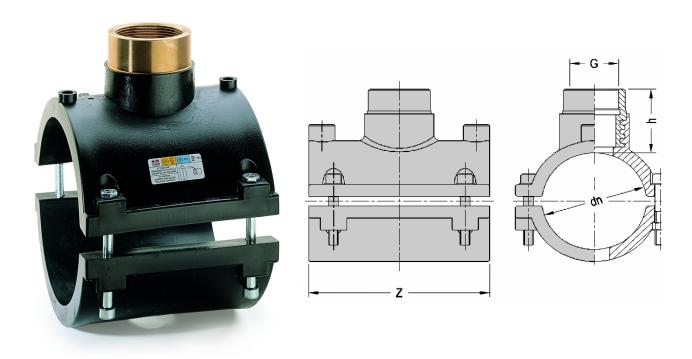


Таблица 2.26. Седелка переходная электросварная с латунным вкладышем. Свариваемость на трубе/фитинге.

dn,	, Свариваемость на трубе/фитинге РЕ 10									
MM	SDR 26	SDR 17	SDR 11							
110x		•	•							
125x		•	•							
140x		•	•							
160x	*	•	•							

^{* -} сваривается только с помощью моновалентного электросварочного аппарата Euro

Таблица 2.27. Седелка переходная электросварная с латунным вкладышем. Диаметры, размеры, вес

-			вес, г
Dn(mm)xG	разме	еры, мм	гнездо
	h	z	SDR 11 - PN 16
110x 1" 1/2	50	160	1300
110x 2"	71	160	1550
125x 1" 1/2	47	160	2150
125x 2"	68	160	1700
140x 1" 1/2	47	160	1565
140x 2"	68	160	1850
160x 1" 1/2	50	160	1750
160x 2"	72	160	2035

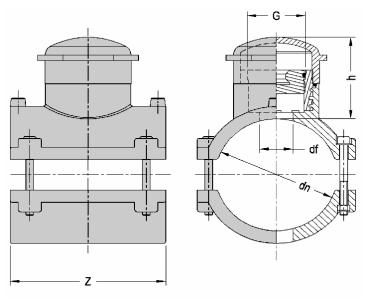


Таблица 2.28. Седелка переходная электросварная с запорной арматурой. Свариваемость на трубе/фитинге.

do	Свариваемость на трубе/фитинге РЕ 100						
dn, mm	SDR 17	SDR 11					
110x	•	•					
125x	•	•					
140x	•	•					
160x	•	•					

Таблица 2.29. Седелка переходная электросварная с запорной арматурой. Диаметры, размеры, вес

	Hyrame: Pol, Pasmepol, See									
dn	(pa	змеры	вес, г						
dn, mm	G	h	df	Z	SDR 11					
110	2"	90	54	160	2200					
125	2"	91	54	160	2300					
140	2"	92	54	160	2450					
160	2"	93	54	160	2650					

df = максимальный внутренний диаметр трубы

2.2.1.19 Фланец стальной с полипропиленовым покрытием

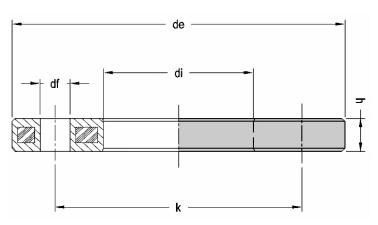


Таблица 2.30. Фланец стальной с полипропиленовым покрытием. Диаметры, размеры, вес

				разм	еры, мм				
dn PE, mm	D СТАЛЬ	de	k	h	d	df	кол-во отверстий	PN	вес, г
32	25	115	85	16	42	14	4	PN 10/16	500
40	32	140	100	18	51	18	4	PN 10/16	700
50	40	150	110	18	62	18	4	PN 10/16	810
63	50	165	125	18	78	18	4	PN 10/16	1090
75	65	188	145	18	92	18	4	PN 10/16	1380
90	80	204	160	20	108	18	8	PN 10/16	1310
110	100	224	180	20	128	18	8	PN 10/16	1370
125	100	224	180	20	135	18	8	PN 10/16	1370
140	125	252	210	24	158	18	8	PN 10/16	2060
160	150	285	240	24	178	22	8	PN 10/16	2840

2.2.1.20 Фланец

Алюминий

Сталь

Сталь коронное кольцо

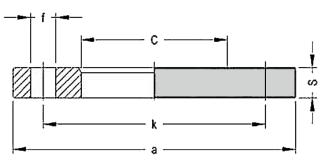


Таблица 2.31. Фланец. Диаметры, размеры, вес.

таолица 2.3	аолица 2.31. Фланец. диаметры, размеры, вес.												
				СТАЛЬ)	АЛЮ	АЛЮМИНИЙ						
Dn PE, MM	D	С	PN 10	PN 16	PN 25	PN 10	PN 16	PN 10	PN 16	PN 25	PN 10	PN 16	PN 25
				S			s		а			k	
32	25	42	16	16	16	12	12	115	115	115	85	85	85
40	32	51	18	18	18	16	16	140	140	140	100	100	100
50	40	62	18	18	18	16	16	150	150	150	110	110	110
63	50	78	20	20	20	20	20	165	165	165	125	125	125
75	65	92	20	20	22	20	20	185	185	185	145	145	145
90	80	108	20	20	24	22	22	200	200	200	160	160	160
110	100	128	22	22	26	22	22	220	220	235	180	180	190
125	100	135	22	22	26	22	22	220	220	235	180	180	190
140	125	158	22	22	28	22	22	250	250	270	210	210	220
160	150	178	24	24	30	24	24	285	285	300	240	240	250

Таблица 2.32. Фланец полиэтиленовый. Диаметры, размеры, вес

dn PE,	2	D c		PN 16	PN 25	Кол-в	о отве	рстий		вес	, г	
MM	U	С		f		PN 10	PN 16	PN 25	PN 10/16	PN 10	PN 16	PN 25
32	25	42	14	14	14	4	4	4	250	1060	1060	1140
40	32	51	18	18	18	4	4	4	500	1760	1760	1870
50	40	62	18	18	18	4	4	4	550	1940	1940	2000
63	50	78	18	18	18	4	4	4	690	2340	2340	2400
75	65	92	18	18	18	4	4	8	880	3040	3040	3000
90	80	108	18	18	18	8	8	8	980	3190	3190	4000
110	100	128	18	18	22	8	8	8	1130	4010	4010	5300
125	100	135	18	18	22	8	8	8	1030	3760	3760	5300
140	125	158	18	18	26	8	8	8	1350	4770	4770	7400
160	150	178	22	22	26	8	8	8	1820	6790	6790	8900

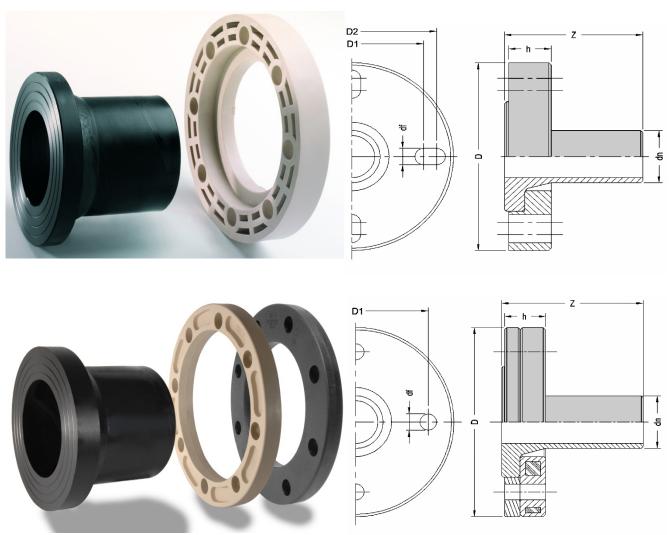


Таблица 2.33. Фланец, полиэтилен + сталь. Диаметры, размеры, вес.

dn, mm	D	υυ		разме	ры, мм	1 /1		Кол-во		DNI	
PE	СТАЛЬ	D	D1	D2	h	Z	0f	отверстий	вес, г	PN	тип
40	32/40	150	100	110	24	87	18	4	365	PN 16	Α
50	40/50	165	110	125	28	95	18	4	510	PN 16	Α
63	50/60/65	183	125	145	30	94	18	4	580	PN 16	Α
75	60/65/80	198	135	160	33	107	18	8	750	PN 16	Α
90	80	198	160		33	113	18	8	840	PN 16	Α
110	100	219	180		35	128	18	8	1135	PN 16	Α
125	100	220	180		35	153	18	8	1340	PN 16	Α
140	125	252	210		48	156	18	8	4520	PN 16	В
160	150	285	240		53	159	22	8	5970	PN 16	В

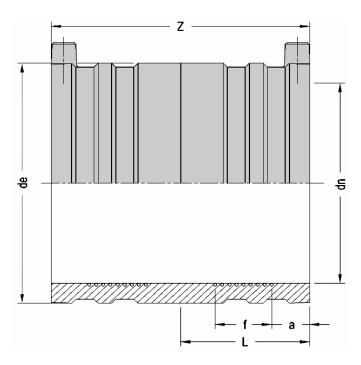


Таблица 2.34. Муфта соединительная электросварная PN 10 – SDR17. Свариваемость на трубе/фитинге

dn, мм	Свариваемость на трубе/фитинге РЕ 100							
	SDR 33	SDR 26	SDR 17					
32			•					
40			•					
50			•					
63			•					
160		•	•					

^{• -} варить только с помощью мультиволентного аппарата - моноволентными Euro S1 PLUS or Euro S1 начиная с версии M10-001 после обновления.

Таблица 2.35. Муфта соединительная электросварная PN 10 – SDR17. Диаметры, размеры, вес.

do		pas	змеры,	мм		вес, г
dn, mm	de	L	f	а	Z	
32	46	38	19	12	80	75
40	56	44	22	13	90	110
50	68	49	23	14	100	155
63	82	54	26	18	111	225
160	198	86	39	22	172	1550

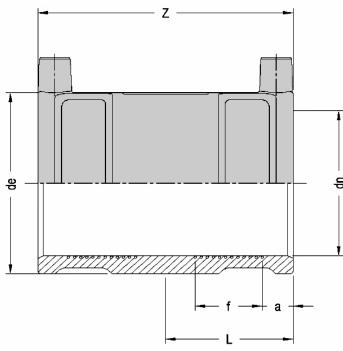


Таблица 2.36. Муфта соединительная электросварная PN 16 – SDR11. Свариваемость на трубе/фитинге

груое/фитинге									
dn, мм	SDR 26	SDR 17	SDR 11						
20			• 🛦						
25			• 🛕						
32		• 🛦	•						
40		• 🛦	•						
50		•	•						
63		•	•						
75		•	•						
90	•	•	•						
110	•	•	•						
125	•	•	•						
140	•	•	•						
160	•	•	•						

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

Таблица 2.37. Муфта соединительная электросварная PN 16 – SDR11. Диаметры, размеры, вес.

размерь	размеры, вес.							
d		раз	меры,	MM		вес, г		
dn, mm	de	L	f	а	Z			
20	33	33	15	13	70	45		
25	38	33	15	12	70	55		
32	46	38	19	12	80	75		
40	56	44	22	13	90	110		
50	68	49	23	14	100	155		
63	82	54	26	18	111	225		
75	93	61	36	15	121	270		
90	114	66	37	15	132	430		
110	137	70	36	18	140	645		
125	153	76	39	18	152	840		
140	171	82	48	19	163	1090		
160	198	86	45	22	172	1550		

^{▲ -} минимальная толщина стенки трубы - 3 мм

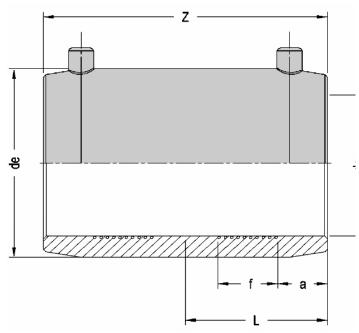


Таблица 2.38. Муфта соединительная электросварная PN 25 – SDR 7,4/ Свариваемость на трубе/фитинге

dn,	Сварива	Свариваемость на трубе/фитинге РЕ 100							
MM	SDR 26	SDR 17	SDR 11	SDR 9	SDR 7,4				
20			• 🛦	•	•				
25			• 🛦	•	•				
32		•	•	•	•				
40		•	•	•	•				
50		•	•	•	•				
63		•	•	•	•				
75		•	•	•	•				
90	•	•	•	•	•				
110	•	•	•	•	•				
125	•	•	•	•	•				
140	•	•	•	•	•				
160	•	•	•	•	•				

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

▲ - минимальная толщина стенки трубы - 3 мм

Таблица 2.39. Муфта соединительная электросварная PN 25 – SDR 7,4. Диаметры, размеры, вес.

dn		раз	меры,	мм		DOC -
dn, mm	de	L	f	а	Z	вес, г
20	33	33	15	13	70	45
25	38	33	15	12	70	55
32	46	38	19	12	80	75
40	56	44	22	13	90	110
50	68	49	23	14	100	155
63	82	54	26	18	111	225
75	99	60	36	14	120	330
90	116	65	37	14	130	490
110	145	70	36	18	140	800
125	163	76	39	18	151	1060
140	183	81	48	18	161	1440
160	207	86	53	20	172	1950

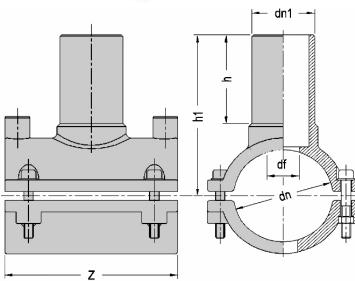


Таблица 2.41. Седелка электросварная без фрезы. Свариваемость на трубе/фитинге

евариваемость на трубе, фитипге									
do ma	Свариваемость на трубе/фитинге РЕ 100								
dn, mm	SDR 26	SDR 17	SDR 11						
40x			•						
50x			•						
63x		•	•						
75x		•	•						
90x		•	•						
110x		•	•						
125x		•	•						
140x		•	•						
160x	•	•	•						

Таблица 2.40. Седелка электросварная без

фрезы. Диал	летры,			•	
D		размер	ы, мм		вес, г
Dn x dn, мм	h	h1	z	df	PN 16 SDR 11
40 x 20					
x 25	1	Моноб	лочный	і вариа	ЭНТ
x 32					
50 x 20	52	159	101	13	300
x 25	59	165	101	17	300
x 32	110	170	101	25	300
63 x 20					
x 25					
x 32	1	Моноб	лочный	і вари	ЭНТ
x 40					
x 50		1	ı	ı	ı
x 63	65	140	122	48	300
75 x 25	65	123	125	17	400
x 32	65	123	125	25	405
x 40	70	128	125	32	415
x 50	80	144	125	38	445
x 63	90	159	125	48	500
90 x 20	55	121	125	13	450
x 25	55	121	125	17	460
x 32	55	121	125	25	470
x 40	60	126	125	32	460
x 50	65	137	125	38	500
x 63	73	150	125	48	610
110 x 25					
x 32					
x 40	1	Моноб	лочный	і вариа	ЭНТ
x 50					
x 63					
125 x 25	56	143	160	17	1100
x 32	57	143	160	25	1140
x 40	62	147	160	32	1145
x 50	67	158	160	38	1150
x 63	75	173	160	48	1000
x 90	93	191	190	72	1260
140 x 25	65	159	160	17	920
x 32	65	159	160	25	925
x 40	70	163	160	32	935
x 50	80	179	160	38	965
x 63	90	194	160	48	1025
160 x 25	65	169	160	17	680
x 32	65	169	160	25	700
x 40	73	173	160	32	710
x 50	80	189	160	38	740
x 63	90	204	160	48	800
x 90	90	208	190	72	1700
x 110	96	216	190	88	1890

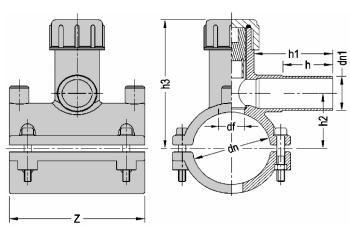


Таблица 2.43. Седелка электросварная с фрезой. Свариваемость на трубе/фитинге PE 100

dn x dn	Свариваемость на трубе/фитинге РЕ 100							
	SDR 26	SDR 17	SDR 11					
50x			•					
63x		•	•					
75x		•	•					
90x		•	•					
110x		•	•					
125x		•	•					
140x		•	•					
160x	•	•	•					

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

Таблица 2.42. Седелка электросварная с фрезой. Диаметры, размеры, вес.

размеры, мм вес,г											
dn x dni	df	h	hi	h2	h3	z	16				
un x um	ui	"	'''	112	113	-	SDR				
							11				
40 x 20		• • •									
x 25		Моноблочный вариант									
x 32			T	Γ			T				
50 x 20	16	50	54	71	131	101	290				
x 25	16	54	54	71	131	101	290				
x 32	18	60	78	40	102	102	290				
63 x 20	25	70	90	55	136	110	430				
x 25	25	70	90	55	136	110	460				
x 32	25	70	105	55	136	110	470				
x 40	25	70	120	55	136	110	510				
75 x 20	25	70	90	63	133	125	610				
x 25	25	70	90	63	133	125	585				
x 32	25	70	107	74	133	125	600				
x 40	25	72	120	63	133	125	610				
x 50	30	72	120	63	160	125	770				
x 63	30	93	120	63	160	125	610				
90 x 20	25	70	90	70	146	125	660				
x 25	25	70	90	70	146	125	660				
x 32	25	70	105	70	146	125	660				
x 40	25	72	120	70	146	125	660				
x 50	30	72	120	73	171	125	660				
x 63	30	93	120	73	171	125	880				
110 x 20											
x 25		Мо	нобло	очныі	й вари	иант					
x 63											
125 x 20	25	70	90	87	165	160	1230				
x 25	25	70	90	87	165	160	1110				
x 32	25	70	108	84	165	160	1125				
x 40	25	72	120	87	165	160	1155				
x 50	30	72	120	87	187	160	1295				
x 63	30	83	120	87	187	160	1330				
140x 20	25	70	90	96	165	160	1350				
x 25	25	70	90	96	165	160	1350				
x 32	25	70	105	96	165	160	1335				
x 40	25	72	120	96	165	160	1350				
x 50	30	72	120	96	167	160	1350				
x 63	30	73	120	96	167	160	1585				
160x 20	25	70	90	108	184	160	1375				
x 25	25	70	90	104	184	160	1395				
x 32	25	70	106	105	185	160	1400				
x 40	25	72	120	104	185	160	1400				
x 50	30	72	120	104	208	160	1400				
x 63	30	72	120	104	208	160	1600				

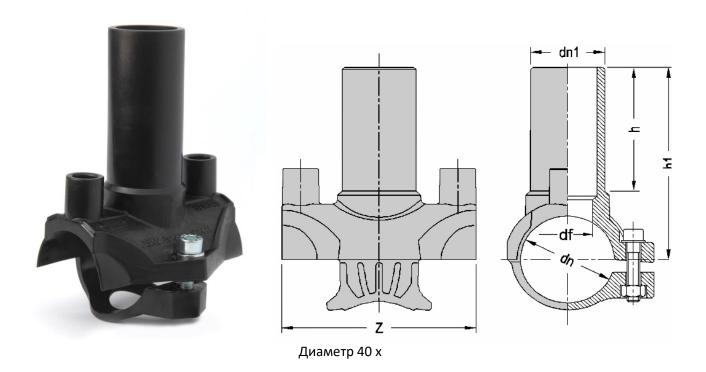
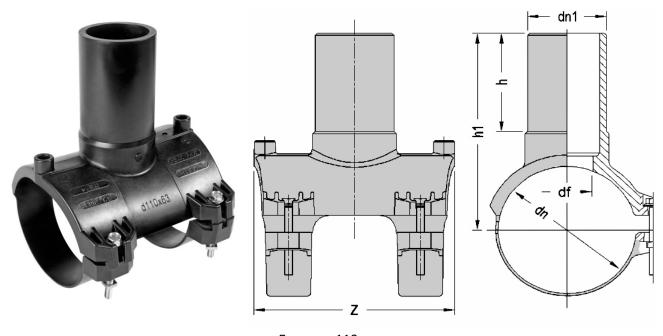



Таблица 2.44. Седелка электросварная без фрезы. Свариваемость на трубе/фитинге

dn, mm	Свариваемость на трубе/фитинге							
مانه	PE	100						
dn	SDR 17	SDR 11						
40x		*						
63x	•	•						
90x	•	•						
110x	•	•						

^{•-}сваривается только с помощью многовалентного аппарата

^{* -} сваривается только с помощью моновалентного электросварочного аппарата Euro

Диаметр 110 х

Таблица 2.45. Седелка электросварная без фрезы. Диаметры, размеры, вес.

аолица 2.45. Седелка электросварная оез фрезы. диаметры, размеры, вес.							
dn	doi		разме	ры, мм		вес, г	
un un	dni	h	hi	Z	df	PN 16, SDR 11	
40x	20	65	99	84	13	75	
Х	25	65	100	84	17	80	
Х	32	65	101	84	25	85	
63x	20	60	110	110	13	150	
Х	25	60	110	110	17	160	
Х	32	65	112	110	25	170	
Х	40	65	115	110	32	180	
Х	50	80	135	110	38	210	
90x	20	60	122	125	13	230	
Х	25	60	127	125	19	235	
Х	32	65	131	125	25	240	
Х	40	65	131	125	32	245	
Х	50	80	151	125	35	270	
Х	63	85	160	125	41	320	
110x	25	60	137	162	17	360	
Х	32	65	141	162	25	365	
Х	40	65	141	162	32	375	
Х	50	80	161	162	38	405	
Х	63	85	170	162	48	450	

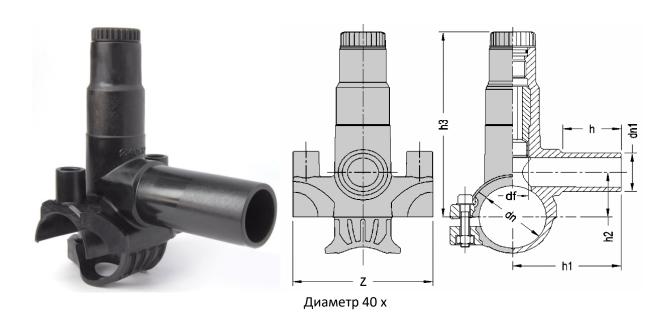
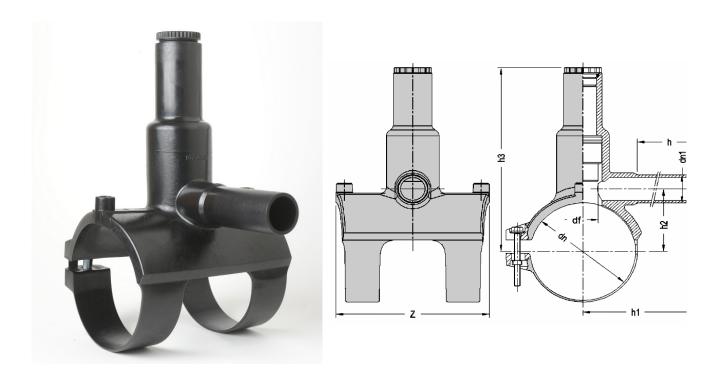



Таблица 2.46. Седелка электросварная с фрезой. Свариваемость на трубе/фитинге

	Свариваемосты	на трубе/фитинге
d, mm	PE	100
	SDR 17	SDR 11
40x		*
63x	•	•
90x	•	•
110x	•	•

^{•-}сваривается только с помощью многовалентного аппарата
*-сваривается только с помощью моновалентного электросварочного аппарата Euro

Диаметр 110 х

Таблица 2.47. Седелка электросварная с фрезой. Диаметры, размеры, вес.

d	al.a.:		ра	азмеры, м	ım		вес, г
dn, мм	dni	h	h ₁	h ₂	h ₃	Z	PN 16, SDR 11
40x	20	66	96	29	110	84	190
Х	25	66	96	29	110	84	200
Х	32	66	96	29	110	84	205
63x	20	72	112	43	160	110	315
Х	25	72	112	43	160	110	330
Х	32	76	112	43	160	110	335
Х	40	76	114	48	160	110	370
Х	50	80	120	48	160	110	390
90x	20	82	125	48	160	110	430
Х	25	76	130	60	200	125	415
Х	32	76	130	60	200	125	435
Х	40	76	135	60	200	125	445
Х	50	76	140	60	200	125	470
Х	63	80	145	60	200	125	490
110x	25	85	145	60	200	125	530
Х	32	76	130	71	208	162	570
Х	40	76	130	71	208	162	595
Х	50	76	135	71	208	162	605
Х	63	76	139	71	208	162	615

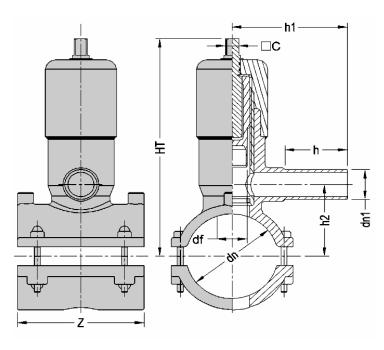


Таблица 2.48. Седелка электросварная с фрезой и клапаном. Свариваемость на трубе/фитинге

Свариваемость на РЕ dn, mm 100трубе/фитинге **SDR 17** dn **SDR 11** 75x 90x • 110x • 125x 140x • • 160x 180x • 200x 225x • • 250x

Таблица 2.49. Седелка электросварная с фрезой и

клапаном. Диаметры, размеры, вес.

dn x dni,		р	вес, г				
MM	h	h1	h2	HT	Z	df	PN 16 SDR 11
75x 32	80	128	69	260	125	30	1615
x 63	93	147	69	260	125	30	1705
90x 32	80	128	69	267	125	30	1690
x 63	93	147	69	267	125	30	1770
110x 32	80	128	69	278	160	30	1990
x 63	83	147	69	278	160	30	1990
125x 32	80	128	69	285	160	30	2115
x 63	83	147	69	285	160	30	2185
140x 32	83	128	69	293	160	30	2225
x 63	73	147	69	293	160	30	2305
160x 32	80	128	69	303	160	30	2395
x 63	72	147	69	303	160	30	2465

2.2.1.29 Штанга управления для седелки электросварной с клапаном

Длина, м
0,75
1,25
1,50

Длина, м
0,80-1,20
0,90-1,50
1,10-1,90
1,40-2,50

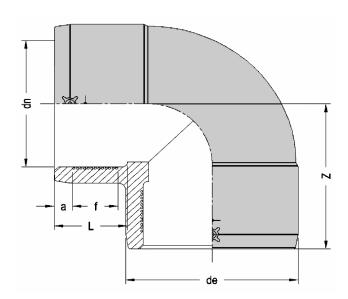


Таблица 2.50. Отвод электросварной 90. Свариваемость на трубе/фитинге

dn, mm	Свариваемость на трубе/фитинге							
	P	E	100					
dn	SDR 17	SDR 11	SDR 9	SDR 7,4				
20		• 🛕	• 🛕	•				
25		• 🛕	•	•				
32	• 🛦	•	•	•				
40	• 🛦	•	•	•				
50	•	•	•	•				
63	•	•	•	•				
75	•	•	•	•				
90	•	•	•	•				
110	•	•	•	•				
125	•	•						
140	•	•						
160	•	•						

Таблица 2.51. Отвод электросварной 90. Диаметры, размеры, вес.

dn,		рази	иеры,	, MM	PN- SDR	DOG -		
MM	de	L	f	а	Z	PIN- 3DK	вес, г	
20	34	33	15	10	55	PN 25 - SDR 7,4	70	
25	38	33	15	9	57	PN 25 - SDR 7,4	80	
32	46	39	18	10	75	PN 25 - SDR 7,4	130	
40	56	48	25	11	80	PN 25 - SDR 7,4	190	
50	68	54	27	12	89	PN 25 - SDR 7,4	300	
63	83	52	27	13	104	PN 25 - SDR 7,4	450	
75	97	64	29	18	116	PN 25 - SDR 7,4	665	
90	116	70	37	18	130	PN 25 - SDR 7,4	1040	
110	142	76	39	20	146	PN 25 - SDR 7,4	1615	
125	162	79	42	19	152	PN 16 - SDR 11	2130	
140	174	85	38	20	166	PN 16 - SDR 11	2520	
160	206	89	45	20	180	PN 16 - SDR 11	4050	

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

^{▲ -} минимальная толщина стенки трубы - 3 мм

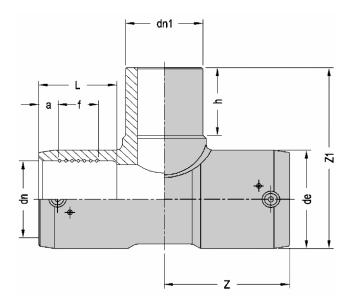


Таблица 2.52. Тройник электросварной 90. Свариваемость на трубе/фитинге

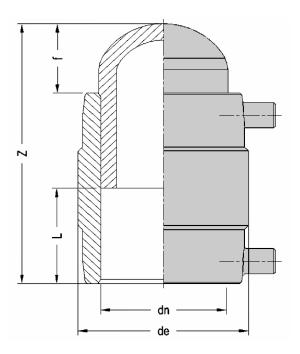
dn, мм	Свариваемость	Свариваемость на трубе/фитинге РЕ 100					
dn	SDR 17	SDR 11					
25		• 🛦					
32	•	•					
40	• 🛦	•					
50	•	•					
63	•	•					
75	•	•					
90	•	•					
110	•	•					
125	•	•					
140	•	•					
160	•	•					
180	•	•					
200	•	•					

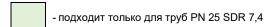
Таблица 2.53. Тройник электросварной 90. Диаметры, размеры, вес.

45				вес, г					
dn, MM	dn1	de	L	f	а	h	Z	Z1	PN 16 - SDR 11
25	25	39	33	15	11	60	53	111	95
32	32	44	44	28	10	48	64	94	105
40	40	54	49	37	11	57	73	112	175
50	50	66	55	36	12	62	81	128	300
63	63	81	61	32	13	72	94	153	420
75	75	96	64	29	18	75	113	176	700
90	90	116	70	37	18	85	125	202	1170
110	110	141	76	39	20	84	141	233	1725
125	125	161	79	42	19	100	156	269	2800
140	140	174	85	38	20	121	150	308	3050
160	160	206	89	51	20	127	184	350	5570

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

^{▲ -} минимальная толщина стенки трубы - 3 мм




Таблица 2.54. Заглушка электросварная 90. Диаметры, размеры, вес.

			вес, г						
dn, MM	dn1 mm	de	L	f	а	h	Z	Z1	PN 16 - SDR 11
25	25	39	33	15	11	60	53	111	95
32	32	44	44	28	10	48	64	94	105
40	40	54	49	37	11	57	73	112	175
50	50	66	55	36	12	62	81	128	300
63	63	81	61	32	13	72	94	153	420
75	75	96	64	29	18	75	113	176	700
90	90	116	70	37	18	85	125	202	1170
110	110	141	76	39	20	84	141	233	1725
125	125	161	79	42	19	100	156	269	2800
140	140	174	85	38	20	121	150	308	3050
160	160	206	89	51	20	127	184	350	5570

Таблица 2.55. Заглушка электросварная 90. Свариваемость на трубе/фитинге.

dn,	Свариваемость на трубе/фитинге РЕ 100						
MM	SDR 26	SDR 17	SDR 11	SDR 9	SDR 7,4		
20			• 🛦	• 🛦	•		
25			• 🛦	•	•		
32		• 🛦	•	•	•		
40		• 🛦	•	•	•		
50		•	•	•	•		
63		•	•	•	•		
75		•	•	•	•		
90		•	•	•	•		
110		•	•	•	•		
125		•	•	•	•		
140		•	•	•	•		
160	•	•	•	•	•		
180		•	•	•	•		

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

🛕 - минимальная толщина стенки трубы - 3 мм

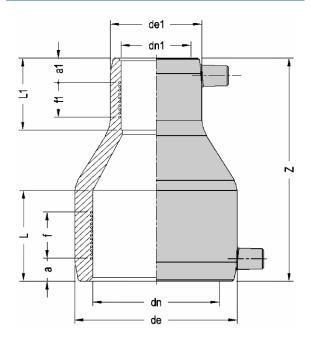


Таблица 2.56. Муфта редукционная (переход электросварной). Диаметры, размеры, вес

dn v dn1				раз	мерь	ı, MN	٩			вес, г
dn x dn1, mm	de	de1	L	L1	f	f1	а	a1	Z	PN 16 - SDR 11
32x 20	44	32	46	38	34	22	10	10	105	75
32x 25	45	36	44	45	31	21	10	10	103	75
40x 20	55	33	49	39	27	22	11	10	120	105
40x 25	55	36	48	40	27	21	11	10	114	100
40x 32	55	44	54	50	30	29	11	10	109	100
50x 25	67	37	49	40	27	21	12	10	126	140
50x 32	66	44	53	49	30	29	12	10	121	170
50x 40	66	54	55	54	33	33	12	11	119	200
63x 32	81	46	62	44	31	24	15	12	156	245
63x 40	81	54	63	54	29	20	15	13	137	250
63x 50	81	66	62	54	26	23	16	16	131	250
75x 50	97	66	70	54	34	30	13	11	154	345
75x 63	97	81	75	62	34	33	13	13	160	395
90x 50	117	66	79	55	45	25	18	16	185	555
90x 63	115	81	77	62	45	33	15	13	160	515
90x 75	115	97	81	60	39	30	18	18	159	550
110x 63	144	83	79	63	40	33	20	15	201	905
110x 90	141	115	87	77	41	39	19	18	181	860
125x 90	162	118	78	68	42	34	22	17	177	1100
125x110	162	144	79	73	33	36	22	20	164	1225
160x 90	209	119	90	79	50	50	23	17	233	2130
160x110	208	144	95	82	48	37	25	20	218	2400
160x125	208	162	98	87	47	30	26	21	208	2505

Таблица 2.57. Муфта редукционная (переход электросварной. Свариваемость на трубе/фитинге.

·		
dn, мм	SDR 17	SDR 11
32x 20		•
32x 25		•
40x 20		• 🛦
40x 25		• 🛦
40x 32	• 🛦	•
50x 25	• 🛦	•
50x 32	• 🛦	•
50x 40	• 🛦	•
63x 32	• 🛦	•
63x 40	• 🛦	•
63x 50	•	•
75x 50		•
75x 63		•
90x 50	•	•
90x 63	•	•
90x 75	•	•
110x 63		•
110x 90	•	•
125x 90	•	•
125x 110	•	•
160x 90	•	•
160x 110	•	•
160x 125	•	•

^{• -} сваривается только с помощью моновалентного электросварочного аппарата Euro

^{▲ -} минимальная толщина стенки трубы - 3 мм

Моновалентный сварочный аппарат

Рис.2. Моновалентный сварочный аппарат EURO S1 LIGHT

Моновалентный сварочный аппарат используется исключительно сварки ДЛЯ лишь электросварных фитингов одного изготовителя. Не гарантируется корректная работа фитингами другой марки. Электросварочный аппарат EURO S1 LIGHT пригоден для сварки всех электросварных фитингов серии "EURO" и позволяет работать при безопасном напряжении ниже 50 В; он производится по стандартам UNI 10566 - ISO 12176-2, имеет маркировку и Нагревательная энергия автоматически регулируется в зависимости от диаметра электросварного фитинга, показателя SDR свариваемой трубы или фитинга, а также от температуры окружающей среды. Дисплей помогает оператору установить параметры свариваемого сварки: тип фитинга номинальный диаметр - SDR и последовательно

показывает: температуру окружающей среды, сварочное напряжение, время сварки, последовательное число осуществлённых сварок, сообщения о неполадке или сигнал тревоги. Моновалентный аппарат EURO S1 LIGHT способен записать код оператора, местоположение площадки, дату, время и параметры сварки. Для переноса данных EURO S1 LIGHT имеет как порт USB, так и последовательный порт. Поставляется с программным обеспечением DBManager, обеспечивающим перенос данных о сварке на компьютер через облачный сервис и передачей в архив. Электросварочные машины должны проходить полный технический осмотр у изготовителя (каждые 2 года) согласно стандарту UNI 10566.

Мультивалентный сварочный аппарат

Электросварочный аппарат EURO SP1 PLUS подходит для сварки всех электросварных фитингов при безопасном напряжении ниже 50 В; аппарат произведен по стандартам UNI 10566 - ISO 12176-2, и имеет маркировку СЕ. Аппарат работает либо в автоматическом режиме с помощью сканера, который считывает штрих-код и определяет параметры сварки; либо в ручном режиме, позволяющим выставить напряжение и время сварки вручную. Дисплей помогает оператору установить параметры сварки: тип свариваемого фитинга - номинальный диаметр - SDR и последовательно показывает: температуру окружающей среды, сварочное напряжение, время сварки, последовательное число осуществлённых сварок, сообщения о неполадке или сигнал тревоги. Сканер для считывания штрих-кода позволяет работать в любых условиях на площадке, а порты USB и RS-232 позволяют запомнить и, при необходимости, автоматически выставить параметры сварки, что значительно ускоряет работу. Поставляются с программным обеспечением DBManager, обеспечивающим перенос данных о сварке на компьютер, облачный сервис и передачей в архив. Электросварочные аппараты должны проходить полный технический осмотр у изготовителя (каждые 2 года) согласно стандарту UNI 10566.

Таблица 2.58. Мультивалентный сварочный аппарат Euro SP1 Plus, характеристики

Напряжение питания	230 V -20% / +15%
Частота	50/60 Hz +/-15%
Напряжение сварки	8 + 48V
Пусковой ток	110 Amp
Сварочный ток на 80%	80 Amp
Максимальное потребление	4500 W
Температура эксплуатации	-10° C + 45° C
Интерфейсы	USB/host - serial RS-232
Уровень безопасности	IP 54
Область применения	20 + 710 mm
Режим работы	считывание штрих-кода и ручной ввод
Баркоды для сварки по стандарту ISO 13950	ef welding Interleaved 2.5/24 digit
Early 511 Traccurry Macri 150 12176/2/4	operator Interleaved 2.5 / 30 цифровая
Баркоды - Трассируемость ISO 12176/3/4	отслеживаемость 128 / 26/40 цифровая
Система считывания баркодов	сканер
Вишьой розима	Установка: время и напряжение или 24-цифровой
Ручной режим	порядок баркода
Объём памяти сварочных циклов	n. 1600
Соединители	4.0 mm
Переходы (адаптеры)	4.7 mm
Размеры L xP x H	32 x 26 x 38 cm
Bec	kg 14,0
Дополнительная опция	GPS
Herretter endin	0.0

Сварочный бар-код (штрих-код)

Это общепризнанная система для сбора информации, считаемых техническими средствами (сканером или световым пером), которые используют цифровой 24-значный контрольный формат INTERLEAVED "2 of 5", согласно стандарту ISO 13950. С помощью информации бар-кода, сварочная машина автоматически определяет особенности свариваемого фитинга и организует работу. Штрих-код содержит все данные, предусмотренные изготовителем необходимые для установки сварочного цикла: тип фитинга, диаметр, срок сварки остывания, контрольная цифра для правильного считывания, контрольный шифровальный ключ идентифицируемый ключ. Это система позволяет избежать ошибок при монтаже со стороны оператора. Ему необходимо лишь отсканировать данные штрихкода и подтвердить считывание. Контрольная цифра штрих-кода гарантирует правильное считывание. О любых отклонениях машина подаст сигнал, и прекратит процесс сварки.

Рис. 3. Мультивалентный сварочный аппарат Euro SP1 Plus

Отслеживание штрих-кода

Это общепризнанная система для отслеживания информации о сварных фитингах и трубах (изготовитель, тип фитинга, партия, сырьё, место производства и т.д.). Все эти данные находятся в штрих-коде BAR CODE type CODE 128, 26-значный контрольный код по стандарту ISO 12176-4. Код считывается с помощью светового пера мультивалентного сварочного аппарата. Это позволяет сохранить все данные о сварке перенести в компьютер, с целью полного восстановления сварочного цикла.

Центратор

- Помогает избежать изгибов и отклонений от центра трубы во время сварки и остывания.
- Позволяет исправить отклонения от оси свариваемых торцов и восстановить цилиндричность при овальности трубы.

Центратор дополняет сварочную машину, если его применения является необходимым для осуществления соединения. Он состоит из держателя, переменного числа зажимных скоб и переходных колец для работы с трубами разных диаметров. Одновременное применение нескольких центраторов позволяет ускорить укладку трубопроводов.

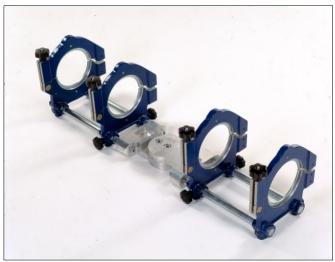


Рис.4. Центраторы с шарниром

- 4 зажимные скобы d 63 мм, переходные кольца d 20-25-32-40-50 мм;
- 4 зажимные скобы 125 мм, переходные стальные кольца d 20-25-32-40-50-63-75-90-110 мм;
- 4 зажимные скобы d 225 мм Переходные кольца d 140-160-180-200 мм

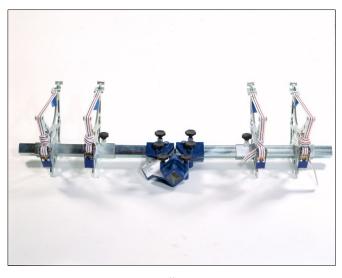


Рис.5. Центратор ремённый

• d 140 - 630 mm

Рис. 6. Центратор с шарниром

● Тип EASY-75 подходящий для сварки d от 20 до 75 мм

Рис. 7. Центратор с шарниром

• Тип EASY-315 подходящий для сварки d от 140 до 315 мм

Рис. 8. Труборез роликовый

Для получения перпендикулярного разреза к оси свариваемых торцов труб необходимо применять дисковый труборез или любое ножевое устройство, в зависимости от толщины трубы.

- d 20 63 мм (макс. толщина 7 мм);
- d 50 125 мм (макс. толщина 13 мм);
- d 110 160 мм (макс. толщина 16 мм)

Скребки

Для удаления оксидного верхнего слоя труб или стыковых фитингов применяются ручные скребки со сменным прямолинейным ножом и механические скребки, которые закрепляются к торцу трубы/фитинга. Механический скребок применяется при идеально ровных концах трубы, которые получаются только с помощью трубореза.


Нож можно применять любой стороной вращая/переворачивая его с помощью центрального болта.

Рис. 9. Ручной скребок

• тип PS-180 d 75 - 315 мм

Рис.10. Механический скребок

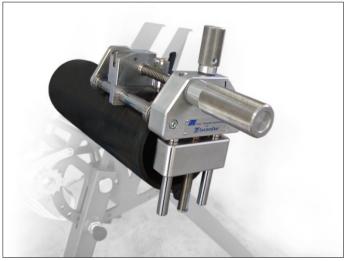

- тип PS-180 d 75 180 мм;
- тип PS-180 d 125 400 мм

Рис.11. Механический скребок

• d 20-25-32-40-50-63 mm

Рис.12. Скребки EURO-DRILL

тип ERT-500 • d 110 - 500 мм

Рис. 13. Скребки

Рис. 14. Скребок орбитальный

- тип EURO 125 пригодный к скоблению труб диаметром 25 125 мм;
- тип EURO 200 пригодный к скоблению труб диаметром 63 200 мм

Специальный обезжириватель для сварных полиэтиленовых (ПЕ) соединений.

Химический	Органические				
состав	изопропиловые				
Упаковка	8 пластмассовых однолитровых бутылок				
Удельный вес	г/мл 0,7 g/cm3				

Рис. 15. Обезжириватель

Сварочные аппараты для стыковой сварки

Сварочный аппарат для стыковой сварки соответствует стандарту UNI 10565, имеет маркировку СЕ и гарантирует:

- Идеальную коаксиальность труб с помощью зажимных губок;
- Идеальную подготовку торцов труб/фитингов, с помощью фрезерного станка;
- отличный контроль сварочного давления и температуры теплового элемента;
- Соответствие с действующими мерами безопасности.

С помощью данного аппарата соединяются разные диаметры; в зависимости от размера трубы она вставляется в зажимные губки и соответствующие переходные кольца.

Сварочная машина имеет корпус, на котором установлены неподвижные и подвижные зажимные губки. Подвижные части гидравлически перемещаются на двух направляющих. Аппарат имеет фрезерный станок, тепловой элемент, электрогидравлическую станцию с манометром для распределения и регулировки давления.

Тепловой элемент гарантирует равномерность температуры на всей поверхности.

Термостат контролирует температуру и гарантирует максимальные изменения ± 2°C относительно выставленной температуры.

Каждые два года сварочная машина должна проходить технический осмотр согласно стандарту UNI 10565.

Таблица 2.59. Эксплуатационные характеристики

	EUROSTANDARD				
Характеристики	TE 160	TE 200	TE 250	TE 315	
Максимально	е потреблен	ие			
- электрогидравлическая станция	370 W	370 W	370 W	750 W	
- фрезерный станок	800 W	800 W	1000 W	1150 W	
- тепловой элемент	1000 W	1420 W	2300 W	3000 W	
Вес	: (кг)				
- корпус	35,0	46,0	45,0	78,0	
- электрогидравлическая станция	26,0	26,0	26,0	28,0	
- фрезерный станок	11,0	13,0	14,5	27,0	
- тепловой элемент	5,0	6,5	10,0	13,0	
Питающее напряжение		230V±10%	5 - 50 Hz		

Сварочные машины имеют промышленной штекер, по IEC мерам безопасности, 2 полюса + заземление 16 A - 220 B

2.2.2.1 Муфта с наружной резьбой

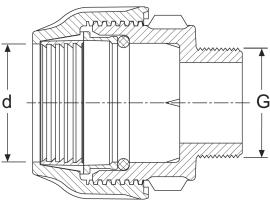


Таблица 2.60. Муфта с наружной резьбой, размеры

C	l x G, mm
20 x ½"	63 x 1 ½"
20 x ¾"	63 x 2"
25 x ½"	63 x 2 ½"
25 x ¾"	75 x 2"
25 x 1"	75 x 2 ½"
32 x ½"	75 x 3"
32 x ¾"	90 x 2"
32 x 1"	90 x 2 ½"
32 x 1 ¼"	90 x 3"
40 x 1"	90 x 4"
40 x 1 ¼"	110 x 2"
40 x 1 ½"	110 x 2 ½"
50 x 1 ¼"	110 x 3"
50 x 1 ½"	110 x 4"
50 x 2"	

2.2.2.2 Муфта соединительная

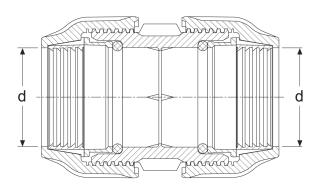


Таблица 2.61. Муфта соединительная, размеры

ос одинительнам, размеры
d x d, mm
20 x 20
25 x 25
32 x 32
40 x 40
50 x 50
63 x 63
75 x 75
90 x 90
110 x 110

Таблица 2.62. Тройник, размеры

d x d x d, mm
20 x 20 x 20
25 x 25 x 25
32 x 32 x 32
40 x 40 x 40
50 x 50 x 50
63 x 63 x 63
75 x 75 x 75
90 x 90 x 90
110 x 110 x 110

2.2.2.4 Тройник с наружной резьбой

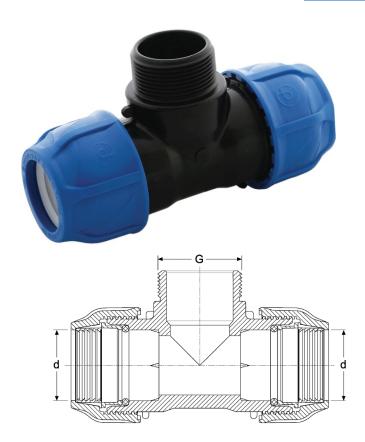


Таблица 2.63. Тройник с наружной резьбой, размеры

d x G x d, mm				
20 x ½" x 20				
20 x ¾" x 20	63 x 1 ¼" x 63			
25 x ½" x 25	63 x 1 ½" x 63			
25 x ¾" x 25	63 x 2" x 63			
25 x 1" x 25	63 x 2 ½" x 63			
32 x ¾" x 32	75 x 2" x 75			
32 x 1" x 32	75 x 2 ½" x 75			
32 x 1 ¼" x 32	75 x 3" x 75			
40 x 1" x 40	90 x 2" x 90			
40 x 1 ¼" x 40	90 x 2 ½" x 90			
40 x 1 ½" x 40	90 x 3" x 90			
50 x 1" x 50	90 x 4" x 90			
50 x 1 ¼" x 50	110 x 2 ½" x 110			
50 x 1 ½" x 50	110 x 3" x 110			
50 x 2" x 50	110 x 4" x 110			

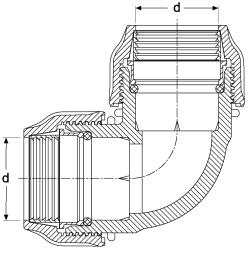


Таблица 2.64. Отвод, размеры d x d, мм 20 x 20 25 x 25 32 x 32 40 x 40 50 x 50 63 x 63 75 x 75 90 x 90 110 x 110

2.2.2.6 Отвод с наружной резьбой

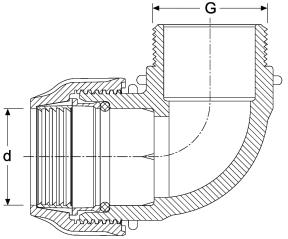


Таблица 2.65. Отвод с наружной резьбой, размеры

d x G, mm				
20 x ½"	50 x 2"			
20 x ¾"	63 x 1 ½"			
25 x ½"	63 x 2"			
25 x ¾"	63 x 2 ½"			
25 x 1"	75 x 2"			
32 x ¾"	75 x 2 ½"			
32 x 1"	75 x 3"			
32 x 1 ¼"	90 x 2 ½"			
40 x 1"	90 x 3"			
40 x 1 ¼"	90 x 4"			
40 x 1 ½"	110 x 3"			
50 x 1 ¼"	110 x 4"			
50 x 1 ½"				

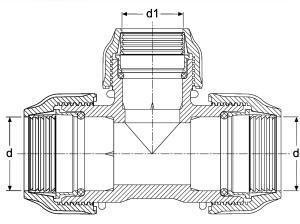


Таблица 2.66. Тройник переходной, размеры

d x d ₁ x d, mm
25 x 20 x 25
32 x 20 x 32
32 x 25 x 32
40 x 25 x 40
40 x 32 x 40
50 x 25 x 50
50 x 32 x 50
50 x 40 x 50
63 x 32 x 63
63 x 40 x 63
63 x 50 x 63
75 x 50 x 75
75 x 63 x 75
90 x 63 x 90
90 x 75 x 90
110 x 63 x 110
110 x 90 x 110

2.2.2.8 <u>Переходник</u>

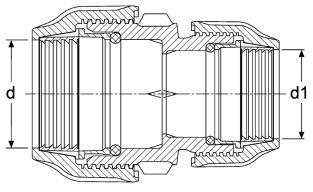


Таблица 2.67. Переходник, размеры

d x d ₁ , mm
25 x 20
32 x 20
32 x 25
40 x 20
40 x 25
40 x 32
50 x 25
50 x 32
50 x 40
63 x 25
63 x 32
63 x 40
63 x 50
75 x 50
75 x 63
90 x 63
90 x 75
110 x 75
110 x 90

2.2.2.9 Отвод переходной

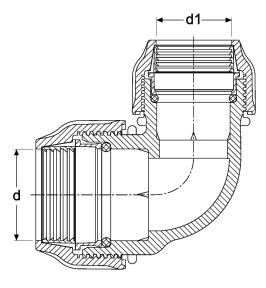


Таблица 2.68. Отвод переходной, размеры

d x d ₁ , mm
25 x 20
32 x 25
40 x 32
50 x 40
63 x 50
75 x 63
90 x 75
110 x 90

2.2.2.10 <u>Заглушка</u>

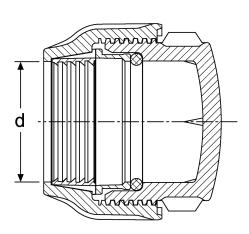


Таблица 2.69. Заглушка, размеры

ourry = na, pasmeps				
d, mm				
20				
25				
32				
40				
50				
63				
75				
90				
110				

2.2.2.11 Муфта с внутренней резьбой

Оцинкованное металлическое кольцо / кольцо из нержавеющей стали

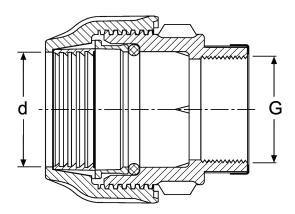


Таблица 2.70. Муфта с внутренней резьбой, размеры

d x G, mm					
20 x ½"	32 x 1 ¼"	63 x 1 ½"	90 x 2 ½"		
20 x ¾"	40 x 1"	63 x 2"	90 x 3"		
25 x ½"	40 x 1 ¼"	63 x 2 ½"	90 x 4"		
25 x ¾"	40 x 1 ½"	75 x 2"	110 x 2"		
25 x 1"	50 x 1 ¼"	75 x 2 ½"	110 x 2 ½"		
32 x ¾"	50 x 1 ½"	75 x 3"	110 x 3"		
32 x 1"	50 x 2"	90 x 2"	110 x 4"		

2.2.2.12 Тройник с внутренней резьбой

Оцинкованное металлическое кольцо / кольцо из нержавеющей стали

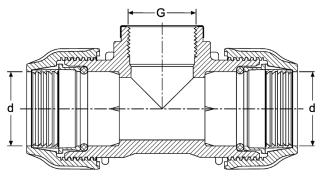


Таблица 2.71. Тройник с внутренней резьбой, размеры

d x G x d, mm				
20 x ½" x 20	50 x 1 ½" x 50			
20 x ¾" x 20	50 x 2" x 50			
25 x ½" x 25	63 x 1" x 63			
25 x ¾" x 25	63 x 1 ¼" x 63			
25 x 1" x 25	63 x 1 ½" x 63			
32 x ½" x 32	63 x 2" x 63			
32 x ¾" x 32	63 x 2 ½" x 63			
32 x 1" x 32	75 x 2" x 75			
32 x 1 ¼" x 32	75 x 2 ½" x 75			
40 x ¾" x 40	75 x 3" x 75			
40 x 1" x 40	90 x 2 ½" x 90			
40 x 1 ¼" x 40	90 x 3" x 90			
40 x 1 ½" x 40	90 x 4" x 90			
50 x ¾" x 50	110 x 2 ½" x 110			
50 x 1" x 50	110 x 3" x 110			
50 x 1 ¼" x 50	110 x 4" x 110			

2.2.2.13 <u>Отвод с внутренней резьбой</u> Оцинкованное металлическое кольцо / кольцо из нержавеющей стали

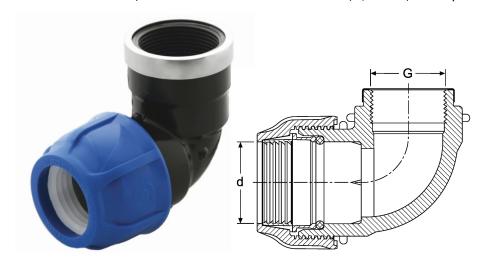
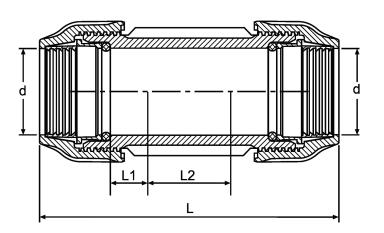


Таблица 2.72. Отвод с внутренней резьбой, размеры


размеры				
d x G, mm				
20 x ½"	50 x 2"			
20 x ¾"	63 x 1 ½"			
25 x ½"	63 x 2"			
25 x ¾"	63 x 2 ½"			
25 x 1"	75 x 2"			
32 x ¾"	75 x 2 ½"			
32 x 1"	75 x 3"			
32 x 1 ¼"	90 x 2 ½"			
40 x 1"	90 x 3"			
40 x 1 ¼"	90 x 4"			
40 x 1 ½"	110 x 3"			
50 x 1 ¼"	110 x 4"			
50 x 1 ½"				

2.2.2.14 Ремонт муфты

Таблица 2.73. Отвод с внутренней резьбой, размеры

D,MM	L,MM	L _{1,} MM	L _{2,} MM
20	100	14.5	25
25	115	14.5	30
32	140	16.0	40
40	168	19.0	50
50	183	21.5	60
63	225	25.0	70
75	260	30.0	80
90	310	35.5	100
110	355	41.0	115

2.3 Комплектующие

2.3.1 Предохранитель концевой термоусаживаемый

Концевой предохранитель предназначен для гидроизоляции слоя пенополиуретана торца трубы ТВЭЛ-ПЭКС.

Концевой предохранитель надевается на торец трубы до проведения работ по монтажу соединительного элемента.

Усадка концевого предохранителя осуществляется при помощи паяльной лампы или промышленного фена.

Таблица 2.74. Номенклатура концевых предохранителей

Тип ТЗИ	dmax, мм	Dmax, мм	L1, MM	L2, mm
Т3И-1	70	130	27	40
Т3И-2	120	240	20	36
Т3И-3	180	300	19	104

Рис. Торцевая заглушка

Таблица 2.75. Соответствие торцевых заглушек на трубы ТВЭЛ-ПЭКС-1,-К

Диаметр рабочего	Диаметр наружной оболочки ГПИ-трубы, мм						
трубопровода, мм	90	110	125	140	160	180	225
20							
25							
32							
40							
50	Т3И - 1						
63							
75				_			
90				ТЗИ	- 2		
110							
125							
140						T3	И - 3
160							

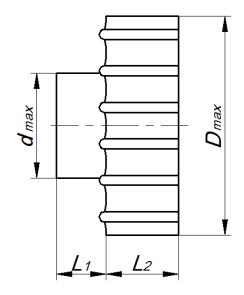


Рис. Торцевая заглушка, размеры

Комплект для изоляции стыка предназначен для тепло- и гидроизоляции муфтового соединения труб ТВЭЛ-ПЭКС, а также стыкового соединения трубы ТВЭЛ-ПЭКС со стальной трубой.

Номенклатурой предусмотрены два типа комплекта для изоляции стыка. Тип комплекта выбирается, исходя из размеров наружной оболочки соединяемых труб.

Комплект используется для изоляции стыка труб ТВЭЛ-ПЭКС с наружным диаметром защитной оболочки от 90 по 225 мм.

В состав комплекта тип 1 входят:

- муфта полиэтиленовая (1 шт);
- адгезивная лента, (количество метров определяется исходя из диаметра оболочки);
- пробка для стравливания воздуха (1 шт);
- пробка «заварочная» (1шт).

Теплоизоляционный материал (компоненты для пенополиуретана) входят в состав комплекта.

Ду Nο Øиз. Размер узла прохода трубы Наименование ПΠ мм MM Øнар, мм Øвн, мм 25÷32 1 90 Узел прохода через стену 90 133 100 40 2 110 Узел прохода через стену 110/125 160 139 3 125 50 4 63,75 140 200 174 Узел прохода через стену 140/160 160 5 90 6 110 180 Узел прохода через стену 180 225 200 125,140,160 7 225 Узел прохода через стену 225 285 250

Таблица 2.76. Размеры узлов прохода

2.3.3 Кожух для изоляции линейного стыка

Кожух для изоляции отвода предназначен для тепло- и гидроизоляции муфтового соединения труб ТВЭЛ-ПЭКС, а также стыкового соединения трубы ТВЭЛ-ПЭКС со стальной трубой.

Варианты исполнения и комплектации для диаметров оболочки труб 90 -160 мм. и 160 -225 мм.

В комплект для изоляции отвода входят:

- кожух защитный;
- болты соединительные.

Кожух защитный состоит из двух полуформ (изготовленных из ПНД).

В одной из полуформ впоследствии высверливается отверстие, предназначенное для заливки теплоизоляционного материала (ППУ). Материалы для заливки входят в состав комплекта для изоляции.

Торцы полуформ кожуха выполнены в виде ступенчато сужающихся горловин, на каждой из ступеней которых нанесены цифры (метки), указывающие на соответствующий диаметр наружной оболочки присоединяемой трубы. При изоляции стыка полуформы кожуха обрезаются в соответствии с этим диаметром.

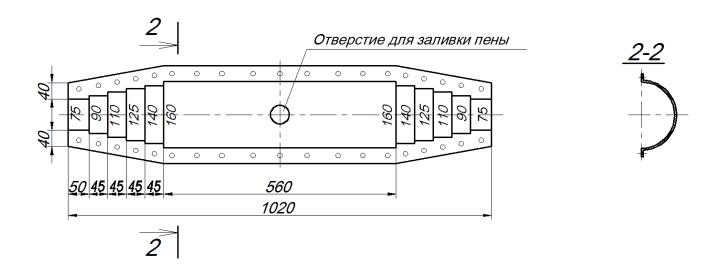


Рис. 16. Кожух для изоляции линейного стыка d 75-160 мм, размеры

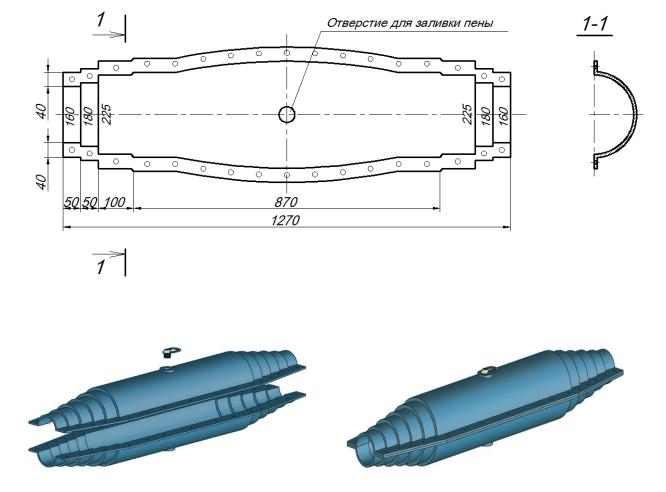


Рис. 17. Кожух для изоляции линейного стыка d 160-225 мм, размеры, внешний вид

Кожух для изоляции отвода предназначен для тепло- и гидроизоляции отводов 90° ТВЭЛ-ПЭКС.

В комплект для изоляции отвода входят:

- кожух защитный;
- болты соединительные.

Кожух защитный состоит из двух полуформ (изготовленных из ПНД).

В одной из полуформ в последствии высверливается отверстие, предназначенное для заливки теплоизоляционного материала (ППУ). Материалы для заливки входят в состав комплекта для изоляции.

Торцы кожуха выполнены в виде ступенчато сужающихся горловин, на каждой из ступеней которых нанесены цифры (метки), указывающие на соответствующий диаметр наружной оболочки трубы. При проведении работ по изоляции стыка обе полуформы кожуха обрезаются в соответствии с этим диаметром.

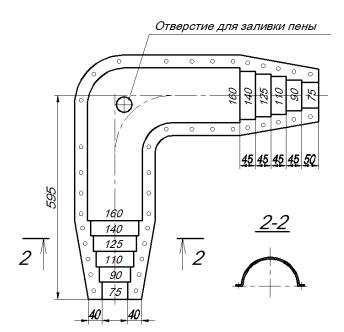


Рис 18. Кожух для изоляции отвода d оболочек 75-160 мм 90° , размеры.

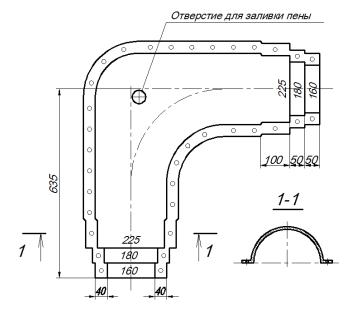


Рис 19. Кожух для изоляции отвода d оболочек 160-225 мм 90° , размеры.

Рис. 20. Кожух для изоляции отвода, внешний вид

Кожух для изоляции тройника предназначен для тепло- и гидроизоляции мест тройникового разветвления труб ТВЭЛ-ПЭКС.

В комплект для изоляции тройника входят:

- кожух защитный;
- болты соединительные.

Кожух защитный состоит из двух полуформ (изготовленных из ПНД).

В одной из полуформ в последствии высверливается отверстие, предназначенное для заливки теплоизоляционного материала (ППУ). Материалы для заливки входят в состав комплекта.

Торцы кожуха выполнены в виде ступенчато сужающихся горловин, на каждой из ступеней которых нанесены цифры (метки), указывающие на соответствующий диаметр наружной оболочки трубы. При проведении работ по изоляции стыка обе полуформы кожуха обрезаются обрезаются в соответствии с этим диаметром.

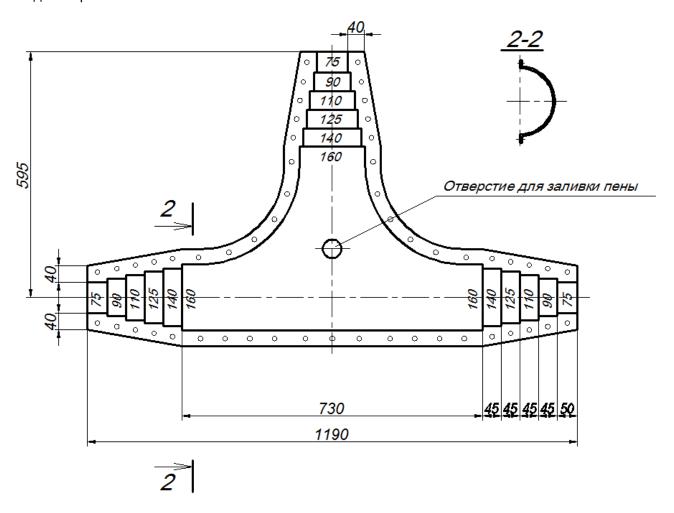


Рис. 21. Тройник для изоляции отвода d оболочек 75-160 мм, размеры.

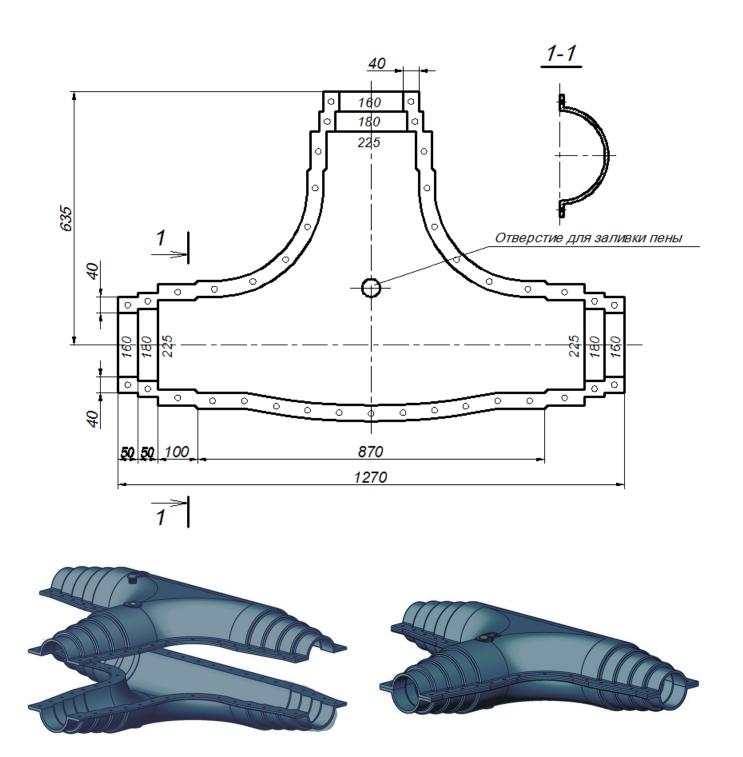


Рис. 22. Тройник для изоляции тройника, внешний вид.

Применяется при проходе теплогидроизолированных труб сквозь стенки строительных конструкций (стен фундаментов, камер, колодцев и пр.). Благодаря узлу прохода обеспечивается целостность гидрозащитной оболочки и сохранение гидроизоляции места прохода

Комплектация: ПЭ труба-оболочка, термолента с замковой пластиной

Типоразмер уплотнителя стенового соответствует наружному диаметру защитной оболочки трубы ТВЭЛ-ПЭКС.

Таблица 2.77. Размеры узлов прохода

№ пп	Ду трубы	Ø из.	Наименование	Размер узла прохода	
	MM	MM		Øнар, мм	Øвн, мм
1	20÷40	90	Узел прохода через стену 90	133	100
2	40,50	110	Vaca Energy 12 Honor (Tolly 110/125	160	120
3	50,63	125	Узел прохода через стену 110/125		139
4	63,75	140	Vaca Eneve sa uenes exerci 140/160	200	17/
5	90,110	160	Узел прохода через стену 140/160 200 174		1/4
6	120,140	180	Узел прохода через стену 180	225	200
7	140,160	225	Узел прохода через стену 225	285	250

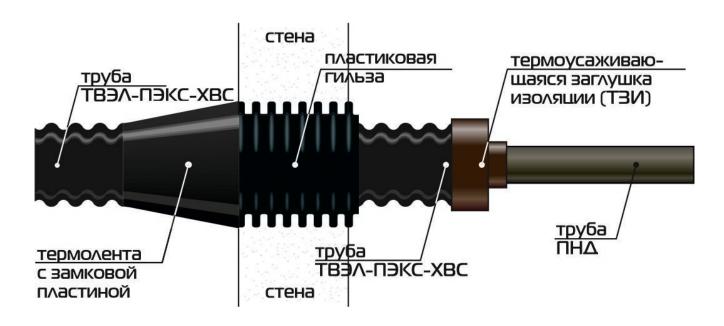


Рис. 23. Узел прохода через стену с использованием гильзы

2.3.7. Теплоизоляционный материал

Для теплоизоляции стыков и тройников используется двухкомпонентная композиция, поставляемая в виде пенопакетов (возможна фасовка в канистры).

Подготовку и заливку смеси следует производить в соответствии с прилагаемой инструкцией.

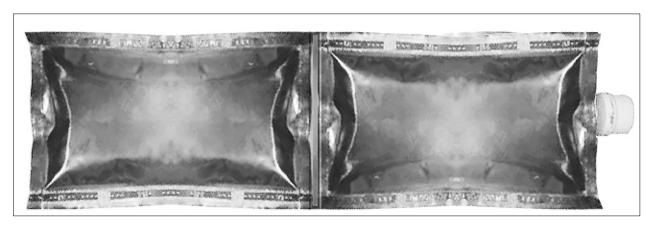


Рис. 24. Пенопакет для теплоизоляции стыка

2.4 Оборудование для систем электрического обогрева

Для обогрева труб ТВЭЛ-ПЭКС используются только саморегулирующиеся электрические нагревательные кабели. Использование других обогревающих кабелей допускается только по согласованию с отделом продаж Завода Полимерных Труб и разработчиками систем обогрева.

Саморегулирующиеся электрические нагревательные кабели предназначены для защиты трубопровода от замерзания, что обеспечивается свойством поддержки положительной температуры транспортируемой среды в заданном диапазоне температур.

Рис. 25. Конструкция саморегулирующегося термокабеля

2.4.1 Коробки соединительные

Коробки предназначены для подвода питания к саморегулирующимся нагревательным кабелям, подключения силовых кабелей питания и кабелей управления систем электрического обогрева. Конструкция корпусов соединительных коробок обеспечивает защиту от проникновения влаги и пыли и высокую коррозионную стойкость.

Рис. 26. РТВ 401. Соединительная коробка с устройством ввода кабеля под теплоизоляцию для подключения к силовой сети саморегулирующихся электрических нагревательных кабелей

Рис. 27. РТВ 402. Коробка соединительная для подключения к силовой сети саморегулирующихся нагревательных кабелей

2.4.2 Контроллеры

Регуляторы (контроллеры) температуры предназначены для управления системами электрического обогрева трубных систем ТВЭЛ-ПЭКС.

Регулятор температуры электронный для систем обогрева трубопроводов. Регулятор входит в состав систем электрообогрева трубопроводов, обеспечивают компенсацию теплопотерь и оптимизацию мощности обогрева за счет создания характеристики саморегулирования системы.

Регулятор температуры электронный для также используется и для поддержания температуры. Регулятор используется в составе систем электрообогрева трубопроводов, а также с системами антиобледенения. Регулятор предназначен для измерения температуры обогреваемого объекта и управления процессом обогрева.

Рис. 28. Регулятор температуры

Рис. 29. Датчик температуры

Комплект для заделки электрических нагревательных кабелей — стандартный комплект для заделки саморегулирующихся нагревательных кабелей, включающий в себя наконечники из кремнийорганической резины, позволяющие просто и электрически надежно осуществлять заделку концов саморегулирующихся нагревательных лент.

В комплект входят обжимные наконечники для подключения нагревательного кабеля к клеммнику соединительной коробки, термоусаживаемые трубки, силиконовый клей-герметик, наконечники, кембрик и кремнийорганическое уплотнение под кабельный ввод.

Комплект для соединения электрических саморегулирующихся нагревательных кабелей предназначен для соединения между собой кабелей.

Комплект предназначен для соединения саморегулирующейся нагревательного кабеля с силовым проводом непосредственно на объекте, и включает в себя:

- 4 трубки термоусаживаемые разного размера;
- 2 медные трубки для питающего кабеля;
- 1 медная трубка для заземляющего контакта, в случаях экранированного саморегулирующего кабеля.

Соединительные трубки и муфты предназначены для соединения кабель-каналов на стыках труб под теплоизоляцией, а также для вывода «горячих» концов нагревательных кабелей.

Возможно применение герметичных (IP 68) быстроустанавливаемых (без специального инструмента) соединительных элементов

Рис. 30. Линейное соединение

Рис. 31. Т- образное соединение

Монтаж линейного соединения

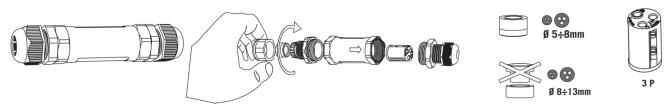


Рис. 32. Разобрать соединительный комплект ТН400 3Р полностью.

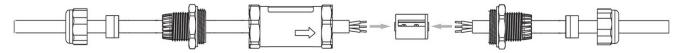


Рис. 33. Силовой кабель питания и установите в таком порядке.

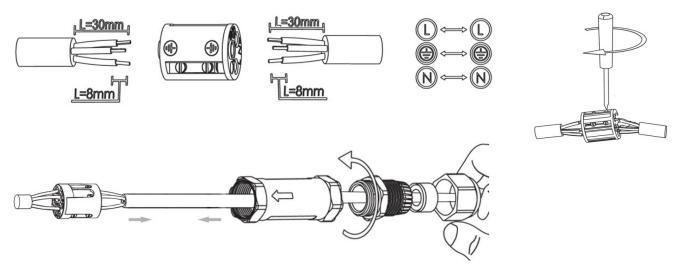


Рис.34. Соединить оба кабеля в клеммной колодке и затянуть винты.

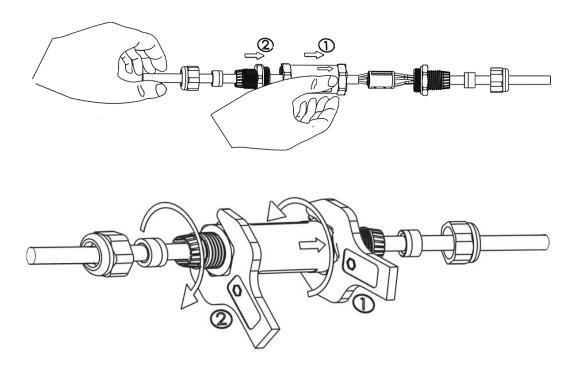


Рис.35. Закрутить обе части

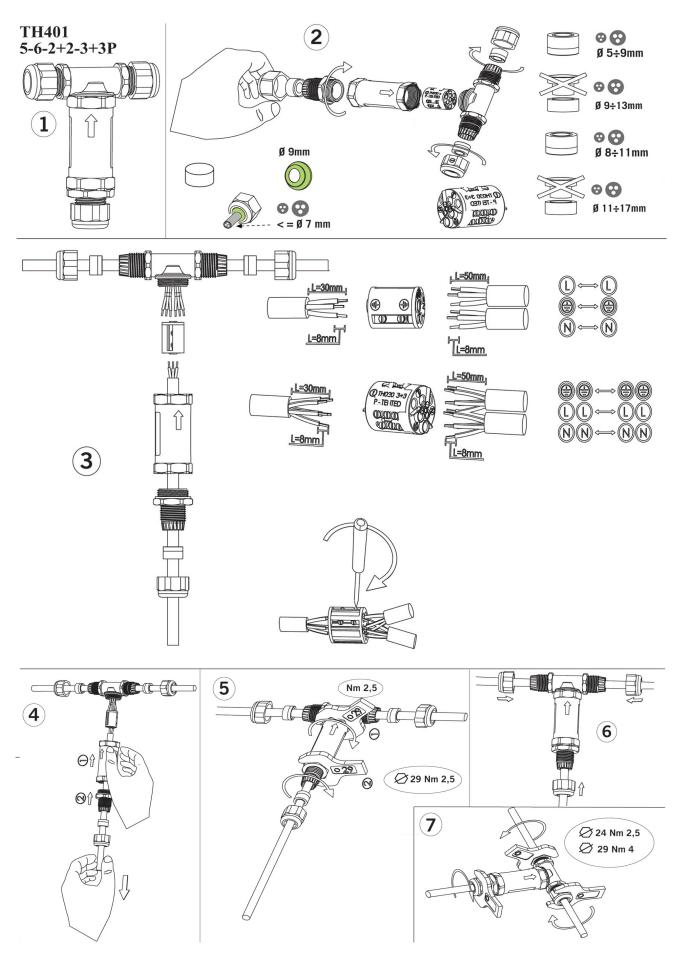


Рис. 36. Последовательность установки кабеля

Возможные варианты поставки и комплектации под заказ.

2.4.4 Шкафы управления

Шкафы управления предназначены для размещения контрольно-регулирующих приборов системы обогрева, а также пусковой, защитной и сигнальной аппаратуры. Шкаф управления размещается, как правило, в отапливаемых помещениях вне взрывоопасной зоны. Для контроля работоспособности системы обогрева в шкафу предусмотрена световая сигнализация. По специальной заявке шкаф может быть изготовлен в следующем исполнении:

уличного исполнения, с обогревом, во взрывозащищенном исполнении иметь связь с компьютером.

Регуляторы температуры.

Регулятор температуры электронный для поддержания фиксированной температуры, в том числе поддержания положительной температуры в шкафах управления. Регулятор используется совместно с системами электрообогрева трубопроводов, а также с системами антиобледенения и другими системами обогрева. Регулятор используется стационарно, в шкафу управления, совместно с внешним датчиком температуры.

3. Проектирование систем электрического обогрева

3.1 Сведения для технического задания

Проектирование системы электрообогрева осуществляется на основании технического задания, согласованного с заказчиком. Исходными материалами для составления технического задания являются:

- ✓ полностью заполненный опросный лист;
- ✓ чертежи обогреваемых трубопроводов;
- ✓ генплан с указанием мест установки шкафов управления обогревом;
- ✓ генплан с указанием трассировки кабельных эстакад для прокладки силовых и контрольных кабелей (по требованию);
- ✓ технологические схемы с указанием направления движения продукта, его расхода (по требованию).

В результате работы должны быть представлены:

- 1. Проектная документация, содержащая пояснительную записку и чертежи по вопросам:
 - теплотехнический расчет с выбором типа и количества греющего кабеля;
 - раскладка и метод крепления греющего кабеля на обогреваемых трубопроводах и оборудовании;
 - расстановка и метод крепления соединительных коробок;
 - технология монтажа всех элементов системы электрообогрева;
 - электрическая схема шкафов управления;
 - выбор сечения и марки силовых и контрольных кабелей, идущих от места установки ШУ до распределительных коробок системы обогрева;
 - кабельный журнал.
- 2. Спецификация оборудования и материалов.
- 3. Задание на проектирование подвода силового питания к ШУ и распределительным коробкам

системы обогрева.

4. Дополнительные задания (при необходимости).

3.2 Технические требования

Проектирование и монтаж трубопроводов с использованием труб ТВЭЛ-ПЭКС проводят в соответствии с требованиями действующих отраслевых строительных норм и правил, а также соответствующих рекомендаций, приводимых в инструкциях, технических описаниях, альбомах технических решений, стандартах организаций на изолированные трубы и системы электрического обогрева.

3.3 Состав системы обогрева

Системы электрического обогрева предназначены для защиты трубопроводов от замерзания. Состав системы обогрева:

- греющая часть систем обогрева представляет собой саморегулирующиеся нагревательные кабели, рассчитанные на напряжение 220-240 В, с линейной мощностью от 10 до 25 Вт/м. Максимальная температура поверхности обогревающих кабелей (при отсутствии достаточного теплосъема) составляет не более 65°С;
- распределительная сеть, обеспечивающая питание всех элементов греющей части и проведение информационных сигналов от датчиков до щита системы управления: силовые и информационные кабели, распределительные коробки, крепежные элементы;
- подсистема управления шкафы управления, терморегуляторы (контроллеры), датчики температуры наружной поверхности напорной трубы, зоны контакта, наружного воздуха, пускорегулирующая и защитная аппаратура;
- подсистема защиты от токов утечки и короткого замыкания.

Для выполнения первичных расчетов необходимой мощности саморегулирующихся нагревательных кабелей (или ИР-нагревателей) необходимо заполнить опросный лист с исходными данными для расчета

3.4 Тепловой режим работы трубопровода

У трубопроводов ТВЭЛ-ПЭКС, при включенной системе распределенного электрического обогрева, средняя температура стенки трубы по нормали к нагревателю имеет максимальное (пиковое) значение.

Не допускается обогрев трубопроводов нагревательными кабелями, которые не относятся к саморегулирующимся, а также иными нагревателями без согласования с заводом-изготовителем.

Особенно напряженным является тепловой режим останова трубопровода при температуре окружающей среды близкой 0...+5°C. Такие условия могут возникнуть при наступлении оттепели весной или осенью в отводах трубопровода не имеющих систем автоматической защиты от перегрева в периоды нулевого водоразбора. Такой режим работы полиэтиленового трубопровода на протяжении длительного времени недопустим.

Не допускается обогрев ПЭ трубопроводов без использования средств автоматического регулирования температуры.

Средняя (по толщине) температура стенки рабочей трубы по линии нормали к нагревателю (tcp.н) определяется выражением:

$$tcp.h = (tk + tbh)$$

где t - расчетная температура в точке (на линии) контакта нагревателя с наружной поверхностью рабочей трубы по нормали к нагревателю, °C;

tвн - расчетная температура в точке (или по линии) пресечения нормалью (плоскости нормалей) внутренней поверхности трубы, °C.

Мощность системы распределенного электрического обогрева рассчитывается исходя из мощности тепловых потерь с поверхности изолированного трубопровода в период минимальных значений температуры окружающей среды с учетом коэффициента запаса. Как правило, коэффициент

запаса принимается k =1,1 для трубопроводов подземной прокладки и не менее k = 1,2 для трубопроводов надземной прокладки.

Методики расчета теплоизоляции приведены в СП 61.13330 и СП 41-103

При устройстве разветвленного водопровода, рекомендуется устанавливать термодатчики на ответвлениях.

Для обогрева полиэтиленовых трубопроводов используют только саморегулирующиеся нагревательные кабели, протягиваемые при монтаже в направляющий элемент - полиэтиленовый кабель-канал. Овальный кабель-канал прилегая нормально бОльшим диаметром к рабочей трубе обеспечивает бОльшую площадь теплообмена с нагревательным кабелем и трубой.

3.5 Расчет линейной мощности и длины кабеля

Расчет линейной мощности и количества нагревательного кабеля подбираются по результатам определения линейной плотности тепловых потерь таким образом, чтобы мощность нагревательного кабеля на 20% превышала плотность тепловых потерь.

Расчет номинальной мощности системы определяется как произведение линейной мощности нагревательного кабеля на его суммарную протяженность.

Сращивание кабеля (в пределах одной нагревательной секции) возможно в случаях, когда суммарная длина соединяемых труб не превышает максимальную длину используемого кабеля.

Разделение нагревательных секций.

Используется в случаях, когда суммарная длина соединяемых труб превышает максимальную длину используемого кабеля.

В случаях сращивания кабеля в местах установки отводов 90°следует предусмотреть запас длины нагревательного кабеля. Образовавшаяся петля оборачивается вокруг отвода для обеспечения дополнительного обогрева. Необходимо следить, чтобы не произошел перехлест кабеля.

Количество нагревательного кабеля, необходимое для системы, складывается из общей протяженности обогреваемых труб, а также расхода кабеля на обогрев участков с повышенной теплоотдачей (фланцев, задвижек и др.) и на проведение монтажных работ.

Расчет пиковых нагрузок проводится по величине стартового тока при минимальной температуре включения системы.

Обогрев ответвлений

В случаях, когда длина соединяемых отрезков нагревательного кабеля не превышает его максимальной допустимой длины, концы нагревательных секций соединяются при помощи клеммной коробки.

В случаях, когда длина соединяемых отрезков нагревательного кабеля превышает его максимальную допустимую длину, на конец одной из нагревательных секций устанавливается концевая муфта, а две другие нагревательных секции соединяются при помощи клеммной коробки или соединительной муфты.

3.6 Прокладка трубопроводов

Принятые решения предусмотрены для подземной бесканальной и канальной прокладки трубопроводов внутриквартальных и локальных систем холодного водоснабжения. Бесканальная прокладка трубопроводов рекомендуется при строительстве сетей в непросадочных грунтах с естественной влажностью или водонасыщенных и просадочных грунтах 1-ого типа. При бесканальной прокладке труб ТВЭЛ-ПЭКС устройство сопутствующего дренажа не требуется.

При других природных условиях строительства сетей с применением трубопроводов ТВЭЛ-ПЭКС (вечномерзлые, пучинистые, илистые, просадочные П-го типа, заторфованные грунты, пойменные территории) в типовые решения требуется внесение соответствующих дополнений и корректировок, учитывающих климатические, геологические и другие особенности строительства в увязке с требованиями

Разработку траншей и работы по устройству оснований для бесканальной прокладки труб ТВЭЛ-ПЭКС следует производить с учетом общих требований СНиП 3.05.03-85* и региональных требований.

Примеры прокладки трубопроводов, включая бесканальную, канальную (в т.ч. в проходном и непроходном канале), в футляре, объемы материалов для прокладки, варианты узлов закругления, примеры прокладки под автомобильными дорогами и газонами подробно изложены в издании «Типовые решения прокладки трубопроводов ТВЭЛ-ПЭКС».

Допускается проектировать теплосети наземным способом. В этом случае трубы укладываются на пролетное строение эстакады. Эстакады (опоры, стойки, пролетные строения) проектируются в соответствии со СНиП 2.09.03-85, с пособием к СНиП 2.09.03-85 и типовой серии 3.015.

Для закрепления трубопроводов рекомендуется использовать хомуты через определенные расстояния (см. таблицу).

Наружный диаметр полиэтиленовой оболочки трубы, мм	Расстояние между хомутами L, м
90	0,9
110	1,0
125	1,1
140	1,2
160	1,6
180	1,8
225	2,2

Таблица 3.1. Соответствие расстояний между хомутами диаметрам оболочки трубы

Для крепления трубопроводов, к примеру, возможно использование конструкцию хомут (ГОСТ 24137-80) с гайками (ГОСТ 5915-70). Для защиты от коррозийного действия блуждающих токов предусмотреть в местах контакта трубопровода с хомутом и металлоконструкцией опоры из паронита по ГОСТ 481-80 толщиной 4 мм. Допускается применение резиновых пластин по ГОСТ 7338 для устройства прокладки между хомутами и оболочкой трубопровода.

Хомут устанавливается в заранее высверленные отверстия.

Не допускается воздействие на трубу ТВЭЛ-ПЭКС прямых солнечных лучей, т.к. ультрафиолетовое излучение ухудшает оболочку трубы.

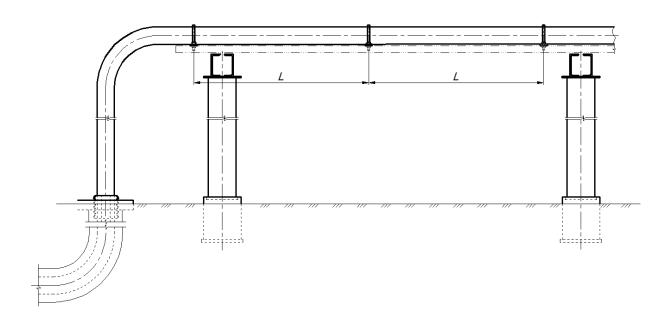


Рис.37. Наземная прокладка

3.7 Формулы для расчетов

Тепловые потери одиночно проложенного трубопровода:

$$W = K \cdot (t - t)$$
, BT/M,

где t – температура теплоносителя, °C; Т

t – температура грунта на глубине заложения, °С;

 $K - коэффициент тепловых потерь, <math>BT/(M \cdot ^{\circ}C)$.

$$K = \frac{1}{R(\tau p) + R(\tau p)}$$

где R(тр) – линейное термическое сопротивление теплоизолированной трубы, (м·°C)/Вт;

R(rp) — линейное термическое сопротивление грунта, (м·°C)/Вт.

R(об) – линейное термическое сопротивление защитной оболочки, (м·°С)/Вт.

Термическое сопротивление однородного цилиндрического слоя:

$$R(\text{тр}) = R(\text{из}) + R(\text{нтр}) + R(\text{об}),$$

R(из) - линейное термическое сопротивление теплоизоляции, (м·°C)/Вт;

R(HTp) - линейное термическое сопротивление напорной трубы, (м·°C)/Вт;

R(об) - линейное термическое сопротивление защитной оболочки, (м·°С)/Вт;

$$R = \frac{Ln\frac{d(BH)}{d(Hap)}}{2\pi\lambda}$$

 λ – теплопроводность материала слоя Вт/(м·°С),

d(вн), d(нар) - внутренний и наружный диаметры слоя соответственно, м.

Линейные термические сопротивления слоев изолированной трубы:

$$R(из) = \frac{\text{Ln}\frac{d3}{d2}}{2\pi\lambda(из)},$$

$$R(\text{HTP}) = \frac{\text{Ln}\frac{\text{d2}}{\text{d1}}}{2\pi\lambda(\text{HTP})}$$

$$R(HTP) = \frac{Ln \frac{d4}{d3}}{2\pi\lambda(o6)}$$

d1, d2 – внутренний и наружный диаметры напорной трубы,

d3, d4 – внутренний и наружный диаметры защитной оболочки,

$$R(o6) = \frac{\operatorname{Ln}\frac{d4}{d3}}{2\pi\lambda(o6)}$$

Термическое сопротивление грунта:

$$R(rp) = \frac{\operatorname{Ln} \frac{4h}{d4}}{2\pi\lambda(rp)}$$

h – глубина заложения трубопровода, м.

При отрицательной температуре окружающей среды жидкость, протекающая по трубопроводу с заданным расходом, будет терять тепло, и на определенной длине трубопровода, зависящей от начальной температуры жидкости и ее расхода, температура снизится до температуры замерзания. Эта длина называется Критическая длина L вычисляется по формуле:

$$L = 1164 \cdot Q \cdot t / W$$

где Q – расход жидкости, м3 /ч;

t – температура жидкости, поступающей в трубопровод, °C;

W – величина тепловых потерь, Вт/м.

Если длина трубопровода конструктивно превышает критическую, то трубопровод неизбежно начнет промерзать — вначале за пределами критической длины, а затем, по мере зарастания льдом и снижения расхода, по всей длине. Увеличение слоя теплоизоляции лишь увеличивает критическую длину и время промерзания (от момента пуска трубопровода).

Вода в трубопроводе, имеющем длину ниже критической, не замерзает, если ее расход останется неизменным. Однако возможно снижение расхода воды (например, в ночное время) вплоть до полной остановки течения жидкости. В таком случае возможно замерзание воды внутри трубопровода.

Время полного промерзания трубопровода Т(з), ч.:

$$T(3) = \frac{\lambda(\pi\pi.\pi.)\rho V}{3600q}$$

Где удельная теплота плавления льда, λ (пл.л.)=3,35·10(^5), Дж/кг

 ρ - плотность воды, кг/м3; ρ =10(^3) кг/м3

V - емкость 1 пог.м трубопровода, м3

q - линейная плотность тепловых потерь, Вт/м.

Поскольку величина V в уравнении может быть задана как характеристика трубы, то формула может быть записана в следующем виде:

$$T(3) = \frac{M}{q}$$

где M - коэффициент, учитывающий теплоту фазового перехода воды для данного типоразмера трубы.

$$M = \frac{\lambda(\Pi \Pi. \Pi.) \rho V}{3600}$$

4. Рекомендации по производству работ

4.1 Хранение

Условия хранения труб ТВЭЛ-ПЭКС (далее - трубы), комплектующих изделий и материалов должны исключать вероятность их повреждения.

При хранении труб сроком более двух недель необходимо обеспечить их защиту от длительного прямого воздействия ультрафиолетового излучения и температуры свыше 40°С рулонными непрозрачными материалами. Во избежание тепловой деформации наружных защитных оболочек труб из-за перегрева, укрывающие материалы должны обеспечивать проветривание труб.

Комплектующие изделия и материалы должны храниться в упаковке предприятия - изготовителя в закрытых помещениях или контейнерах, а в период монтажа - на специально отведенных участках, имеющих спланированное основание. Места хранения должны располагаться на расстоянии не менее одного метра от нагревательных приборов, легковоспламеняющихся, взрывоопасных и горюче-

смазочных материалов, а также веществ, к которым материал труб химически не стоек и контакт с которыми приводит к повреждению труб.

Основание для хранения должно быть плоским, без камней и других предметов, имеющих острую кромку, которая может повредить защитную оболочку труб.

Компоненты для теплоизоляции (ППУ) необходимо хранить при температуре воздуха от +15°С до +25°С в сухих помещениях, оснащенных принудительной вентиляцией. В помещениях, предназначенных для хранения компонентов ППУ, запрещается постоянное пребывание людей. Срок хранения компонентов ППУ не должен превышать 60 суток со дня поставки.

Полиэтиленовые муфты необходимо хранить в вертикальном положении.

Изделия из резины, термоусаживаемые изделия и материалы необходимо хранить в сухих помещениях, защищенных от атмосферного влияния (солнце, дождь, мороз).

При хранении концы труб должны быть надежно закреплены. Торцы труб должны быть защищены заглушками заводского изготовления или полиэтиленовой пленкой толщиной не менее 100 мкм, которые должны быть зафиксированы клейкой лентой. Заглушки (или защитная пленка) снимаются после транспортировки к месту проведения монтажных работ и размотки вдоль траншеи непосредственно перед монтажом.

Поверхность, на которую укладываются трубы, во избежание повреждения наружной оболочки, должна быть без выступов и неровностей.

Наружная защитная оболочка трубы не должна подвергаться механическому воздействию при температуре ниже 0°C, такому, как толчки, удары и большие перегибы.

При длительном хранении бухты с трубами должны быть размещены на ровной горизонтальной или наклонной поверхности, обеспечивающей равномерную опору бухты по всему периметру.

В случае хранения на наклонной поверхности необходимо принять меры, препятствующие смещению бухты. Площадки для хранения труб следует располагать в местах, не подверженных подтоплению водой.

При хранении сроком более двух недель соединительные элементы и другие комплектующие изделия, и материалы должны размещаться в закрытых сухих помещениях или контейнерах в соответствии с требованиями.

Отрезки труб следует хранить в штабелях. Порядок складирования должен исключать возможность деформации труб и обеспечивать легкий доступ к верхним рядам.

Штабелированные трубы должны быть зафиксированы для предотвращения скатывания и выпадения путем установки ограничителей по ширине штабеля. Допускается складирование бухт в два ряда. При этом необходимо обеспечить надежное крепление бухт, препятствующее скатыванию.

4.2 Транспортирование

Существуют три способа транспортирования труб:

- в бухтах;
- на барабанах;
- мерными отрезками.

Транспортировка труб в бухтах и в отрезках, а также комплектующих изделий и материалов, производится любым видом транспорта в соответствии с требованиями, установленными для данного вида транспорта и обеспечивающими сохранность груза. При транспортировании трубы должны быть уложены на ровную поверхность транспортного средства, без острых граней и неровностей. В транспорте должны быть предусмотрены приспособления, предотвращающие перемещение труб при движении. Запрещается использовать для этих целей металлические тросы, цепи, проволоку и другие средства, способные повредить защитную оболочку трубы.

При транспортировке труб мерными отрезками максимальную длину отрезков трубы выбирают в зависимости от используемого транспорта. Допускается изгиб труб с радиусом изгиба, не превышающим минимально допустимое значение для данного типоразмера труб.

Максимальные длины отрезков трубы, поставляемой в бухтах и на барабанах, зависят типоразмера защитной оболочки, и приведены в таблице.

Таблица 3.2. Максимальная длина отрезков трубы ТВЭЛ-ПЭКС при транспортировке в бухтах и отрезках

Размер оболочки	Виток №	Отрезки, м от	Отрезки, м до	Диаметр, м	Ширина, м
90	2	65	98	1,65	1,00
110	2	55	81	1,90	1,00
110	3	82	131*	2,10	1,00
125	2	53	88	2,10	1,00
125	3	89	137*	2,35	1,00
140	2	10	22	2,35	0,50
140	2	23	35	2,35	0,70
140	2	36	55	2,35	0,80
140	2	56	85	2,35	1,00
140	3	86	132*	2,65	1,00
160	2	10	19	2,45	0,50
160	2	20	31	2,45	0,70
160	2	32	49	2,45	0,80
160	2	50	75	2,45	1,00
160	3	76	117	2,80	1,00
160	2	58	87	2,45	1,15
160	3	88	136*	2,80	1,15
180	2	10	17	2,60	0,50
180	2	18	27	2,60	0,70
180	2	28	42	2,60	0,80
180	2	43	65	2,60	0,90
180	3	66	101*	2,95	0,90
200	Отрезки 6 или 12 м.				
225	Отрезки 6 или 12 м.				

* - максимальная длина отрезка обусловлена характеристикой кабеля (длина рабочей ветви кабеля не должна превышать определенного значения) и длиной рабочей трубы (длина может быть менее 100 м.).

По желанию заказчика кабель продевается в кабель-канал трубопровода в заводских условиях, но длиной не более 100 м.

Труба, намотанная на барабан, транспортируется при помощи седельного тягача и прицепа. Конструкция прицепа позволяет перевозить две катушки единовременно. Длина прицепа, предназначенная для перевозки двух барабанов, составляет 13 метров.

Для быстрого и качественного проведения работ по размотке трубы организатор работ должен обеспечить максимально удобный проезд к заранее выбранному месту размотки.

Допускается транспортировка на одном барабане двух и более отрезков трубы, в том числе различных типоразмеров.

При транспортировке на катушке концы труб должны быть надежно закреплены.

4.3 Погрузочно-разгрузочные работы и размотка трубы

Погрузочно-разгрузочные работы с трубами рекомендуется производить при температуре наружного воздуха выше 0°С, используя при погрузке и разгрузке мягкие пеньковые и синтетические канаты, брезентовые полотенца и другие мягкие чалочные приспособления. Во избежание повреждения полиэтиленовых защитных оболочек труб использование для этих целей металлических тросов или цепей запрещается.

При разгрузке запрещается сбрасывать, скатывать бухты и отрезки трубы с любой высоты и перемещать трубы волоком.

Разгрузка труб, должна осуществляться при помощи вилочного погрузчика или вручную. Вилы погрузчиков должны быть оборудованы мягкими прокладками, например, из полиэтиленовых труб.

Трубы, поставляемые в бухтах, во время хранения и транспортировки должны быть связаны фиксирующими ремнями (стяжками). При намотке каждый виток трубы последовательно фиксируется ремнями, как минимум, в четырех местах по периметру окружности бухты. Дополнительно при помощи ремней фиксируются начало и конец трубы.

При размотке запрещается разрезать одновременно все фиксирующие ремни. Освобожденная от ремней труба подвержена самопроизвольному раскручиванию, что может привести к травмам находящихся вблизи людей, а также к повреждению защитной оболочки трубы.

Размотку труб в бухтах выполняют вручную, раскатывая бухту вдоль траншеи. При раскатывании бухты необходимо следить за тем, чтобы на пути размотки трубы не попадались камни и другие предметы, имеющие острые грани, которые могу повредить защитную оболочку трубы. Допускается осуществлять размотку трубы непосредственно в траншею.

Не рекомендуется перетаскивание труб через дороги, по каменистой земле и другим грубым поверхностям. Для предотвращения повреждений трубы следует использовать подставки или другие защитные приспособления.

До размотки трубы необходимо определить начало и конец трубы, с которого необходимо начинать размотку. По мере размотки трубы необходимо разрезать фиксирующие ремни последовательно освобождая каждый виток трубы.

Трубы, поставляемые на барабанах, разматывают с барабана, не снимая его с автотранспорта. При проведении работ по разматыванию трубы с барабана запрещено присутствие посторонних лиц.

Начало трубы выводится из прицепа между двух горизонтальных направляющих, находящихся на задней части платформы. На платформе прицепа должно находиться не менее двух человек, которые должны притормаживать вращающийся барабан. Размотку трубы производят вручную с использованием мягких строп.

В процессе размотки с барабана необходимо обеспечить защиту от повреждений защитной оболочки трубы.

По окончании размотки барабана необходимо соблюдать крайние меры предосторожности в отношении свободного конца трубы, который в силу своего свободного состояния и напряженности размотанной трубы может представлять опасность; вблизи свободного конца трубы рабочих не должно быть.

Перед проведением монтажных работ рекомендуется размотать трубу вдоль траншеи и выдержать в таком положении в течение 5 часов для выравнивания отрезка трубы.

Для обеспечения выравнивания труб и предотвращения ее обратного скручивания необходимо установить временные крепления в начале и конце трубы, а также по всей длине через каждые 20-25 метров. Допускается использовать различные способы фиксации трубы, обеспечивающие ее сохранность.

При проведении работ при пониженной температуре наружного воздуха необходимо проведение специальных мероприятий по обеспечению требуемых условий работы с трубами.

Перед размоткой труб рекомендуется выдержать их в теплом помещении не менее 8-10 часов.

При хранении трубы на открытом воздухе перед проведением работ по размотке необходимо предусмотреть меры по прогреву труб горячим воздухом с помощью промышленного теплогенератора. Прогрев производится в оборудованной палатке (допускается накрыть трубу брезентом). Прогревать трубу необходимо изнутри и снаружи во избежание возникновения трещин на защитной оболочке во время размотки бухты.

4.4 Организация производства работ при прокладке и монтаже труб

4.4.1 Подготовительные работы

При бесканальной прокладке труб дно траншеи необходимо выровнять, очистить от камней и других предметов, имеющих острые кромки, которые могут вызвать повреждение защитной оболочки трубы.

На дне траншеи необходимо выполнить песчаное основание (подсыпку) толщиной не менее 100 мм. Для устройства подсыпки рекомендуется использовать строительный песок с размером зерен не более 4 мм.

При прокладке труб под улицами и дорогами в существующих непроходных каналах или футлярах (без вскрытия дорожного полотна) песчаное основание не требуется.

В случае монтажа элементов трубопровода непосредственно в траншее в местах устройства соединительных швов на дне траншеи рекомендуется устраивать приямки.

Трубы в траншее должны лежать свободно, повторяя рельеф дна и конфигурацию стенок траншеи, что позволяет избежать напряжения в трубопроводе, которые могут возникнуть при засыпке траншеи грунтом.

4.4.2 Монтажные работы

Непосредственно перед монтажом необходимо провести визуальный осмотр трубы по всей длине на предмет отсутствия в защитной оболочке сквозных повреждений (проколов, пробоин), глубоких надрезов, трещин. При наличии значительных повреждений дефектный участок трубы вырезают. При незначительных надрезах и трещинах длиной возможно устранение дефектов при помощи клеевой или полиэтиленовой термоусаживаемой ленты.

Работы по монтажу соединительных элементов, а также гидро- и теплоизоляции стыковых соединений, как правило, должны производиться при температуре окружающего воздуха не ниже плюс 5°C.

При атмосферных осадках и/или температуре наружного воздуха ниже плюс 5°С монтажные работы необходимо выполнять под укрытием (шатры, палатки и т.д.). Прогрев воздуха в месте производства работ должен осуществляться с помощью промышленного теплогенератора.

Подготовительные работы и монтаж труб, соединительных элементов, запорной арматуры и других элементов трубопровода должны выполняться в соответствии с технологическими картами.

4.4.3 Земляные работы

Перед обратной засыпкой траншеи необходимо:

- закончить все строительно-монтажные работы по прокладке трубопровода;
- закончить работы по гидро- и теплоизоляции соединительных швов и соединений;
- выполнить проверку геодезических отметок трубопровода;
- выполнить предварительные гидравлические испытания.

Засыпку траншеи выполняют в три этапа.

На первом этапе выполняют обсыпку нижней зоны траншеи строительным песком с размером зерен до 4 мм с подбивкой пазух между трубами, а также между трубопроводом и стенками траншеи на высоту не менее 100 мм над верхом трубопровода. После засыпки песок естественной влажности должен быть утрамбован вручную или путем поливки (коэффициент уплотнения от 0,97 до 0,98).

На втором этапе выполняют засыпку верхней зоны траншеи грунтом. Грунт не должен содержать камней, щебня, гранул размером более 16 мм, остатков растений, мусора, глины. Засыпка мерзлым грунтом запрещается.

Степень уплотнения принимают в соответствии с проектом. При достижении высоты защитного слоя песка и грунта 350-400 мм над каждой трубой укладывают сигнальную ленту по всей длине трубопровода.

На третьем этапе выполняют засыпку траншеи до проектной отметки земли с уплотнением механическим способом.

4.5 Монтаж соединительных элементов

4.5.1. Подготовка трубы к монтажу

Перед началом работ по монтажу фитингов (и других соединительных элементов) следует подготовить торцы соединяемых труб к дальнейшей работе. Для этого необходимо освободить напорную трубу от защитной оболочки и слоя теплоизоляции, а также выровнять торец напорной трубы.

С помощью ножовки или ножа снять защитную оболочку на расстоянии 300-400 мм от торца трубы

С помощью молотка снять теплоизоляционный слой трубы.

Обрезать напорную трубу перпендикулярно продольной оси трубы на расстоянии 250-300 мм от торца теплоизолирующего слоя

4.5.2. Монтаж компрессионных соединительных элементов

Компрессионные фитинги позволяют надежно произвести соединения без применения специального сварочного оборудования для соединения пластиковых труб. Соединение пластиковых труб при этом происходит обжимным способом.

Преимуществом обжимных фитингов является простота и легкость монтажа. Не требуются специальные навыки для сборки компрессионных соединений, фитинги компрессионные поставляются полностью готовыми к монтажу, в сборе и комплектности.

Фитинги компрессионные обладают еще одним важным достоинством - такие соединения являются сборно-разборными, и это позволяет при необходимости произвести быстрый демонтаж или переделку трубопроводной системы. Монтаж полиэтиленовых фитингов может происходить практически при любых погодных условиях, в том числе при отрицательных температурах.

При помощи фаскоснимателя или ножа подрезать наружную фаску на напорной трубе

Отметить глубину вхождения трубы в корпус фитинга

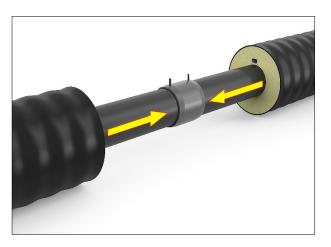
Ослабить гайку фитинга. Вставить трубу в фитинг до начального упора, означающее достижение уплотнения.

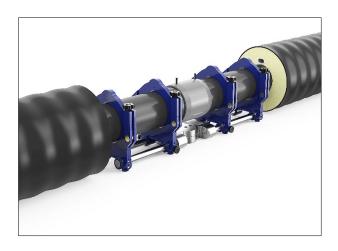
Протолкнуть трубу через уплотнение до упора в ограничитель. Проверить отметку глубины вставки на трубе.

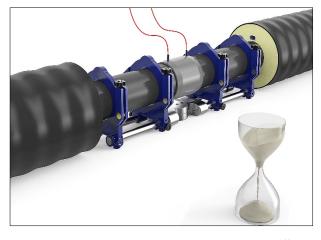


Затянуть гайку с максимально возможной силой. Для затягивания гайки использовать специальный ключ или подходящие стандартные инструменты.

4.5.3. Монтаж электросварных соединительных элементов


При помощи скребка или поворотного зачистного инструмента равномерно снять оксидный слой.


Обработать зачищенный участок чистящей салфеткой или растворителем.


Отметить глубину вставки трубы в фитинг.

Вставить торцы соединяемых труб в гнезда электросварной муфты до центрального упора или до нанесенной отметки. Обеспечить соостность кабель-каналов обоих торцов соединяемых труб.

Зафиксировать трубы при помощи зажимов или иным способом, устраняющим механические напряжения в трубе.

Произвести сварку согласно прилагаемой к сварочному аппарату инструкции по эксплуатации.

Не снимая трубных зажимов, выдержать в течение минимального периода охлаждения.

4.6 Соединение кабель-каналов

Перед монтажом соединительных элементов необходимо совместить кабель- каналы на обоих отрезках трубы ТВЭЛ-ПЭКС, соблюдая соосность соединяемых труб и кабель-каналов.

Рис 38. Схема совмещения кабель- каналов

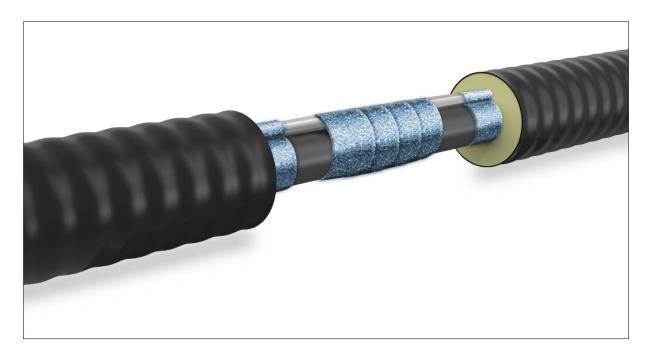


Рис 38. Фиксация конструктивных элементов узла соединения

После соединения термокабелей в соответствии с рис.40 настоящего Руководства с помощью армированного скотча (алюминиевой ленты) обеспечить фиксацию всех конструктивных элементов узла соединения - присоединяемых труб, кабель-каналов и термокабелей, обмотав их воедино минимум в 2 слоя.

4.7 Изоляция стыкового соединения

4.7.1. Изоляция стыкового соединения при помощи разъемного кожуха

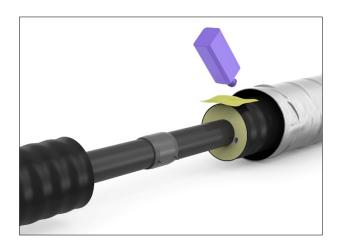
Обрезать торцы половинок кожуха по уровню метки, соответствующей наружному диаметру защитной оболочки соединяемых труб. Установить адгезивную ленту по периметру внутренней поверхности обрезанных торцов обеих половинок кожуха.

Расположить нижнюю половину кожуха (без отверстия для заливки пены) под изолируемым стыком таким образом, чтобы центр половинки совпадал с серединой стыкового соединения.

Установить верхнюю половину кожуха (с предварительно просверленным отверстием диаметром 20мм для заливки пены). Соединить половины кожуха при помощи болтов с гайками.

Удалить перемычку пенопакета. Приготовить смесь для заливки путем энергичного встряхивания пенопакета в течение 20-30 секунд. Вскрыть пенопакет и залить полученную смесь через отверстие в кожухе. Заткнуть заливочное отверстие дренажной пробкой. После завершения процесса пенообразования загерметизировать заливочное отверстие монтажной пробкой.

В зависимости от температуры окружающей среды время пенообразования может изменяться.



Перед началом монтажа стыкового соединения надеть муфту на один из соединяемых отрезков трубы.

Поверхность трубы, по которой перемещается муфта, должна быть очищена от грязи и пыли и обезжирена.

Упаковочная пленка не снимается до начала работ по изоляции стыка.

Обезжирить растворителем защитную оболочку труб с обеих сторон стыка на расстоянии 150-¬200 мм; тщательно зачистить наждачной бумагой и повторно обезжирить растворителем.

Отцентрировать положение муфты относительно оси стыка, нанести маркером риски, соответствующие предполагаемым торцам муфты.

При этом, заранее подготовленные поверхности оболочек труб должны выходить за габариты муфты на 15-20 мм с обеих сторон.


Установить адгезивную ленту на защитную оболочку труб в соответствии с ранее нанесенными рисками.


Удалить упаковочную пленку с наружной поверхности муфты.

Надвинуть муфту на стык, расположив ее в соответствии с ранее нанесенными рисками.

Внутренняя поверхности муфты должна быть сухой и чистой.

Прогреть края муфты мягким пламенем пропановой горелки до полной усадки на оболочку.

С помощью рулетки определить центр муфты, сверлом d=20мм просверлить отверстие перьевым сверлом для заливки смеси компонентов пенополиуретана

С помощью монтажного пенопакета осуществить заливку смеси компонентов ППУ через предварительно просверленное отверстие внутрь муфты.

Заткнуть заливочное отверстие дренажной пробкой.

В течение нескольких минут смесь вспенится, заполнит область стыка и затвердеет.

Заварить отверстие п/э пробкой.

В зависимости от температуры окружающей среды время пенообразования может меняться.

4.8 Испытания трубопровода

Смонтированный трубопровод наполнить водой, удалив из него воздух. Сначала проводится предварительное испытание под давлением, затем основное.

Предварительное испытание. Давление в трубопроводе поднимается в три ступени. Первоначально давление поднимается до уровня, равного 1,5 от рабочего давления. В течение следующих 30 минут дважды с интервалом в 10 мин проводится компенсация падения давления вследствие увеличения диаметра трубы. Таким образом, обеспечивается то, что на 20-й минуте после подъема давления оно должно быть равным 1,5 рабочего давления. С 30-й по 60-ю минуту допускается падение давления максимум на 0,6 бар при отсутствии разгерметизации испытуемого трубопровода.

Основное испытание. Далее, в течение 120 минут основного испытания не допускается падение давления более чем на 0,2 бар от уровня, достигнутого в течение первых 60 минут предварительного испытания.

Во всех случаях, как на стадии предварительных 60 минут, так и на стадии основного испытания - 120 минут, падение давления в большей, чем указано здесь, степени указывает на негерметичность трубопровода.

Замечания. Существенное влияние на результаты испытаний может оказать разница между начальной температурой трубы и температурой испытательной среды, что обусловлено высоким коэффициентом температурного расширения пластмассовых труб. Так, изменение температуры отсеченного от источника давления трубопровода на 10 °С может привести к изменению давления в нем от 0,5 до 1 бар. Поэтому после заполнения трубопровода водой перед началом опрессовки должно пройти не менее 1 часа.

Важно, чтобы наряду с наблюдением за динамикой изменения давления производился визуальный контроль мест соединений, так как на практике приборы для измерения давления не всегда позволяют обнаружить небольшие утечки.

После испытаний трубопровод следует тщательно промыть.

4.9 Монтаж системы электрообогрева

4.9.1. Общие положения

Монтаж электрических систем обогрева должен проводиться в соответствии с «Правилами устройства электроустановок», проектно-сметной и рабочей документацией на систему, местными инструкциями, разработанным и утвержденным планом производства работ.

Монтаж и испытания систем электрического обогрева должен производить специально обученный персонал. Компетентный наблюдатель должен присутствовать при всех стадиях работы, особенно при установке в опасных зонах. Организация, осуществляющая монтаж систем электрообогрева, должна иметь лицензию Ростехнадзора на выполняемую работу.

Монтаж системы электрообогрева осуществляется после выполнения всех основных работ по монтажу и проверке трубопровода.

Установка измерительного оборудования и вентилей, проверка системы под давлением выполняется перед прокладкой кабеля.

Работы по тепло- и гидроизоляции стыковых соединений трубопровода следует проводить после завершения работ по монтажу системы электрообогрева.

4.9.2. Прокладка и крепление нагревательного кабеля

При заказе труб ТВЭЛ-ПЭКС для ХВС до 100 м (специфика кабеля — максимальная рабочая длина 100 м) кабель в заводских условиях продевается внутрь кабель-канала.

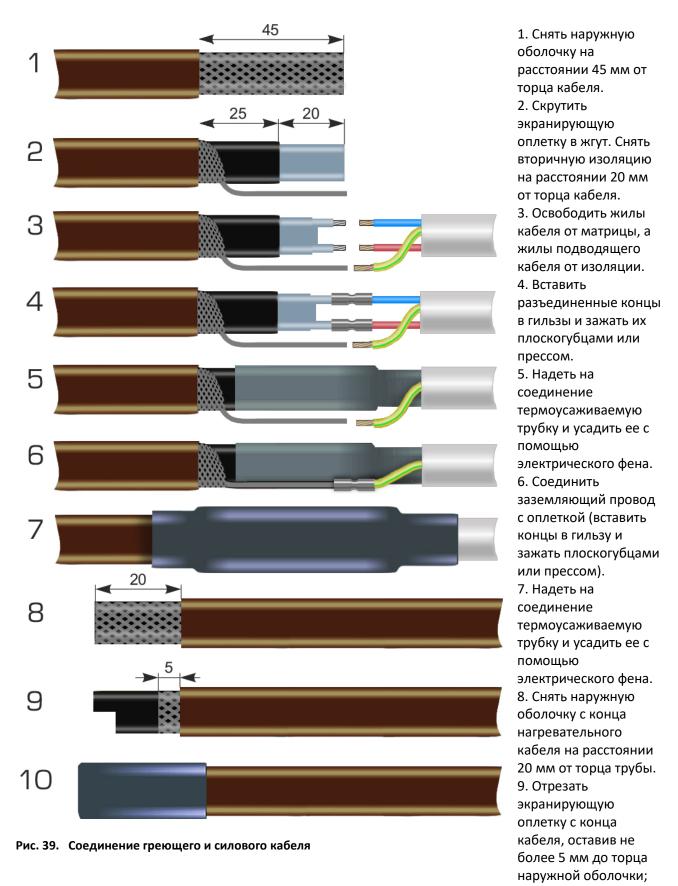
По желанию или необходимости труба ТВЭЛ-ПЭКС с кабель-каналом и кабель поставляются отдельно, в таком случае необходимо завести нагревательный кабель в кабельный канал.

К примеру, в тех случаях, когда укладку трубопровода необходимо провести с изгибом труб, рекомендуется завести кабель до того, как труба будет изогнута.

Для протяжки нагревательного кабеля в кабельный канал необходимо использовать УЗК (устройство для затяжки кабеля), которое представляет собой гибкий пруток из стекловолокна диаметром 3,5 мм. Заводить нагревательный кабель следует плавно, без рывков.

Работы по прокладке нагревательного кабеля следует производить при температуре не ниже минус 15°С. При более низких температурах работы по монтажу рекомендуется вести с прогревом методом подключения питающего напряжения к нагревательным секциям с соблюдением правил ПТЭ и ПТБ при эксплуатации электроустановок потребителей. При необходимости следует установить на нагревательную секцию концевую заделку и присоединить силовой кабель. Продолжительность прогрева — 3-5 минут. При прогреве кабеля запрещается применять разделительные трансформаторы напряжением выше 220 В.

Следует избегать пересечения нагревательных кабелей, так как это приводит к короткому замыканию.


Необходимо предохранять концы кабелей от влаги, повреждений или других воздействий, если они должны оставаться открытыми в течение длительного времени.

Соединение саморегулирующихся кабелей осуществляется при помощи соединительных муфт или в соединительных коробках.

На съемное оборудование, замена которого возможна в процессе эксплуатации, следует оставить допуск 1-2 метра кабеля. Величина допуска указывается на чертежах системы. Нагревательные кабели укладываются таким образом, чтобы в будущем их можно было отводить, обеспечивая доступ к обслуживаемым деталям.

Нагревательный кабель крепится к трубопроводу специальной клейкой лентой. Использование обычной изоленты (или скотча) категорически запрещено во избежание перегрева. Применяется, как правило, алюминиевая лента, которая в случае укладки кабеля на пластиковую трубу, прокладывается также между трубой и нагревающим элементом. Кабель не должен соприкасаться ни с теплоизоляцией, ни с пластиком.

Термодатчик необходимо устанавливать в точке минимально возможной ожидаемой температуры.

срезать конец кабеля ступенькой.

10. Надвинуть термоусаживаемую трубку до наружной оболочки и усадить ее с помощью электрического фена. Конец трубки в горячем виде обжать плоскогубцами.

Рис. 40. Соединение двух греющих кабелей.

4.9.4 Расположение датчиков температуры

Температурный датчик термостата следует размещать диаметрально противоположно от нагревателя на поверхности обогреваемой трубы. Для крепления датчика следует применять теплостойкие хомутики или специальную крепежную ленту. Температурный датчик не должен находиться в прямом контакте с нагревателем.

4.9.5. Заземление и защита электрических цепей

Перед вводом системы электрического обогрева в эксплуатацию необходимо выполнить ее заземление в соответствии с действующими техническими нормативными правовыми актами.

Необходимо проверить заземление шкафа управления, силовых коробок, металлоконструкций (например, наружных металлических сеток или монтажных плат), которые должны быть связаны с главной шиной заземления установки или соединены с проводниками защитного заземления.

Особое внимание следует уделить заземлению металлической оболочки (экрана) кабелей, поскольку в случае повреждения могут возникнуть сильные блуждающие токи от связанных с ними сооружений.

В каждой цепи должны быть установлены предохранительные устройства защиты электрических цепей, рассчитанные на пусковой ток нагревателя и устройства защитного отключения (УЗО), срабатывающие от токов утечки на землю (рекомендуемый номинал тока срабатывания - 30 мА).

4.9.6. Окончательное подключение

Монтаж силовых кабелей и кабелей управления к шкафам управления (ШУ), силовым коробкам и панелям управления и от них следует завершить у ШУ, силовой коробки и панели без осуществления окончательных подключений. Перед подключениями в ШУ, силовых коробках и панелях необходимо проверить все кабели на целостность и сопротивление изоляции.

К окончательному подключению можно приступать только после завершения проверки и оформления записей в протоколе всех проведенных испытаний.

4.10 Пуско-наладочные работы

4.10.1 Общие положения

Осмотр и проверка нагревательных секций производится в три этапа:

Перед началом производства работ: визуальный осмотр на предмет повреждений и целостности изоляции.

После прокладки нагревательного кабеля: проверка целостности жил нагревательного кабеля и сопротивления изоляции. Результаты проверки оформляются протоколом в соответствии с ВСН 123-90 (с учетом инструкции "И 1.13-07. Инструкция по оформлению приемосдаточной документации по электромонтажным работам" от 12.04.2007).

После проведения работ по теплоизоляции стыковых соединений: проверка целостности жил нагревательного кабеля и сопротивления изоляции. Результаты проверки оформляются протоколом в соответствии с ВСН 123-90 (с учетом И 1.13-07).

4.10.2 Настройка и испытание

Проверка сопротивления изоляции для систем до 500 В осуществляется мегометром (например, Ф4102/1-1М) между токонесущими жилами и оплеткой, а также между оплеткой и ближайшей металлоконструкцией.

Результаты проверки оформляются протоколом в соответствии с ВСН 123-90 (с учетом И 1.13-07).

Перед выполнением подключений в шкафу управления необходимо убедиться, что имеются удовлетворительные результаты испытаний и отчеты для всех цепей относительно целостности токопроводящих конструкций, сопротивления изоляции и правильности электрических соединений.

Проверить работоспособность автоматики:

- включить систему согласно прилагаемой инструкции по эксплуатации;
- установить, что датчики температуры подключены и находятся в работоспособном состоянии;
- зафиксировать температуры.
- произвести пробное включение. В рабочем диапазоне температур произвести замеры токов на каждой секции. Вне рабочего диапазона замер токов производить не более 15 минут.
- Произвести индивидуальное испытание системы в течение 24 часов.

Результаты проведенных испытаний и проведения пуско-наладочных работ оформляются актом.

Комплексное опробование системы производится заказчиком в течение 72 часов.

По завершении опробования составляется акт о сдаче системы в эксплуатацию.

Проверка целостности жил нагревательного кабеля осуществляется методом закорачивания двух жил в месте установки концевой заделки. После проверки жилы разомкнуть и установить концевую заделку. Проверке подлежат и целостность жил нагревательного кабеля, и сопротивление изоляции силового кабеля и кабеля управления. Результаты испытаний и проверок оформляются отчетом в соответствии с ВСН 123-90 (с учетом И 1.13-07).

(812) 327-07-07

tvelpex.ru 0

194292 pex@tvel.com Санкт-Петербург, 2-й Верхний переулок tvel_pex Δ ом 4, корпус 1